HPM6750系列--第九篇 GPIO详解(基本操作)

2023-12-17 04:36

本文主要是介绍HPM6750系列--第九篇 GPIO详解(基本操作),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

一、目的

        在之前的博文中我们主要介绍了不同系统不同开发编译调试环境的配置和操作(命令行方式、Visual Studio Code、Segger Embedded Studio for RISC-V),以帮助大家准备好学习环境为目的,但是未涉及到芯片本身以及外设的讲解。

        从本篇开始我们将逐一介绍一些常用的芯片外设模块(GPIO、串口、SPI、网口等等),首当其中的就是最基础的GPIO操作(设置IO方向,进行IO读写操作)。

HPM6750evkmini

二、介绍

        在先楫官网的文档中对GPIO做了相当详细的描述,大家可以参考阅读,下文会针对官网文档进行一个总结性的说明。

        

        ​​​​​​​先楫半导体icon-default.png?t=N7T8http://www.hpmicro.com/resources/resources.html


        GPIO在系统框图中的位置 
系统框图

 

        HPM6750芯片将整个系统划分为三个电源域(系统电源域、电源管理域、电池备份域)。 

        1.IO控制器说明
IO控制器说明
IOC

通用IO控制器

位于系统电源域

管理PA(0-31)、PB(0-31)、PC(0-31)、PD(0-31)、PE(0-31)、PF(0-10)

PIOC

电源管理域IO控制器,功能和通用IOC一致

管理PY(0-11)

BIOC电池备份域IO控制器,功能和通用IOC一致,管理PZ(0-11)

        PIOC和BIOC可以把电源管理域IO(PY)和电池备份域IO(PZ)中的一个或者多个IO映射到系统电源域,之后这些IO就可以由IOC控制。这个我们在以后章节介绍UART时讲解。

        ​​​​​​​

电源管理域IO GPIO控制选择

        IO控制器主要控制这些参数:

  • 外设复用功能映射
  • 输出回送控制(loopback)
  • 模拟功能配置
  • 电压模式控制
  • 开漏设置
  • 施密特触发器
  • 上下拉配置
  • 驱动能力配置

        每个IOC控制的pin都有两个寄存器参数,分别为叫做FUNC_CTL、PAD_CTL,具体的寄存器字段信息如下:

寄存器字段描述
寄存器名称字段功能
FUNC_CTLALT_SELECT[4:0]

外设复用功能映射选择,具体每个IO的映射关系从芯片手册或者SDK源码中可以查阅

ANALOG[8:8]

引脚切换至模拟输入输出功能开关

LOOPBACK[16:16]

输出回送开关

PAD_CTLDS[2:0]

驱动强度选择

PE[4:4]

内部上下拉功能开关

PS[11:11]

内部上下拉电阻选择

SMT[12:12]

输入施密特触发器使能, 此位只对高速引脚可用

OD[13:13]

开漏输出开关

MS[14:14]

引脚供电电压选择, 此位只对高速引脚可用

关于这些描述可以查看官方文档中更加详细的描述,并且在进行在线调试时我们也可以看到这些信息。

        在SDK中我们可以查看每个IO的复用设置信息,例如下图是PB18这个引脚的复用选项。

PB18复用功能
​​​​​​​

        看过我之前文章的小伙伴肯定也看到过下图中调试窗口中各个外设寄存器信息。 

        有了上面的基本知识后,我们再来看下hpm-sdk中关于IO控制器的定义:

        ​​​​​​​ 

 

        HPM_IOC/HPM_PIOC/HPM_BIOC都是IOC_Type类型的结构体指针,IOC_Type结构体内部又是PAD结构体数组,每个数组元素则对应一个IO引脚,每个引脚都有FUNC_CTL和PAD_CTL寄存器。

        从上图可以看到PB.18引脚对应于IOC_Type中的第32+18=50个引脚,即PAD[50]。


        2.GPIO控制说明

        GPIO控制器包括GPIO0/1、FGPIO0/1、PGPIO、BGPIO,其主要功能:

  • 配置IO作为输入或者输出
  • 读取IO的输入状态
  • 设置IO的输出
  • 原子化操作设置IO输出高、低、翻转

        其中GPIO0/1,PGIO,BGPIO 支持配置 GPIO 中断,FGPIO0 和 FGPIO1 不支持生成中断。

        下图是各个GPIO对应的地址信息:

       


 

        上图定义了GPIO_Type结构体类型,其中包括DI(输入寄存器)、DO(输出寄存器)、OE(输入输出方向寄存器)等等。注意DI/DO/OE等都是结构体数组,分别对应着PA/PB/PC等。

         

        DO结构体数组中又定义了VALUE、SET、CLEAR、TOGGLE寄存器,每个寄存器都是32位,每一个bit代表一个引脚。 

         关于VALUE/SET/CLEAR/TOGGLE寄存器描述如下:

        

         

 

         


        3.读取引脚输入高低电平 
/*** @brief   Read target pin level** @param ptr GPIO base address* @param port Port index* @param pin Pin index** @return Pin status mask*/
static inline uint8_t gpio_read_pin(GPIO_Type *ptr, uint32_t port, uint8_t pin)
{return (ptr->DI[port].VALUE & (1 << pin)) >> pin;
}

        假如我们使用GPIO0读取PB.18的值,应该这样调用

uint8_t val = gpio_read_pin(HPM_GPIO0, GPIO_DI_GPIOB, 18);

 


三、实战

        通过上面的介绍大家应该对GPIO有了一个基本印象,下面我们使用代码调试功能帮助大家加深理解。

cd ~/workspace/work/hpm/hello_world
code .

 

        定位到board_turnoff_rgb_led函数,我们查看PB18引脚的FUNC_CTL默认值为0x0;PAD_CTL默认值为0x1010。

         

        在执行过HPM_IOC->PAD[IOC_PAD_PB18].PAD_CTL = pad_ctl;这行代码后PAD_CTL变成了0x810。

        自此GPIO的基本知识点就讲解完毕,大家对着官方文档和调试器调试代码可以进一步加深理解。

这篇关于HPM6750系列--第九篇 GPIO详解(基本操作)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/503073

相关文章

Spring Security基于数据库验证流程详解

Spring Security 校验流程图 相关解释说明(认真看哦) AbstractAuthenticationProcessingFilter 抽象类 /*** 调用 #requiresAuthentication(HttpServletRequest, HttpServletResponse) 决定是否需要进行验证操作。* 如果需要验证,则会调用 #attemptAuthentica

Spring Security 从入门到进阶系列教程

Spring Security 入门系列 《保护 Web 应用的安全》 《Spring-Security-入门(一):登录与退出》 《Spring-Security-入门(二):基于数据库验证》 《Spring-Security-入门(三):密码加密》 《Spring-Security-入门(四):自定义-Filter》 《Spring-Security-入门(五):在 Sprin

OpenHarmony鸿蒙开发( Beta5.0)无感配网详解

1、简介 无感配网是指在设备联网过程中无需输入热点相关账号信息,即可快速实现设备配网,是一种兼顾高效性、可靠性和安全性的配网方式。 2、配网原理 2.1 通信原理 手机和智能设备之间的信息传递,利用特有的NAN协议实现。利用手机和智能设备之间的WiFi 感知订阅、发布能力,实现了数字管家应用和设备之间的发现。在完成设备间的认证和响应后,即可发送相关配网数据。同时还支持与常规Sof

科研绘图系列:R语言扩展物种堆积图(Extended Stacked Barplot)

介绍 R语言的扩展物种堆积图是一种数据可视化工具,它不仅展示了物种的堆积结果,还整合了不同样本分组之间的差异性分析结果。这种图形表示方法能够直观地比较不同物种在各个分组中的显著性差异,为研究者提供了一种有效的数据解读方式。 加载R包 knitr::opts_chunk$set(warning = F, message = F)library(tidyverse)library(phyl

【生成模型系列(初级)】嵌入(Embedding)方程——自然语言处理的数学灵魂【通俗理解】

【通俗理解】嵌入(Embedding)方程——自然语言处理的数学灵魂 关键词提炼 #嵌入方程 #自然语言处理 #词向量 #机器学习 #神经网络 #向量空间模型 #Siri #Google翻译 #AlexNet 第一节:嵌入方程的类比与核心概念【尽可能通俗】 嵌入方程可以被看作是自然语言处理中的“翻译机”,它将文本中的单词或短语转换成计算机能够理解的数学形式,即向量。 正如翻译机将一种语言

6.1.数据结构-c/c++堆详解下篇(堆排序,TopK问题)

上篇:6.1.数据结构-c/c++模拟实现堆上篇(向下,上调整算法,建堆,增删数据)-CSDN博客 本章重点 1.使用堆来完成堆排序 2.使用堆解决TopK问题 目录 一.堆排序 1.1 思路 1.2 代码 1.3 简单测试 二.TopK问题 2.1 思路(求最小): 2.2 C语言代码(手写堆) 2.3 C++代码(使用优先级队列 priority_queue)

K8S(Kubernetes)开源的容器编排平台安装步骤详解

K8S(Kubernetes)是一个开源的容器编排平台,用于自动化部署、扩展和管理容器化应用程序。以下是K8S容器编排平台的安装步骤、使用方式及特点的概述: 安装步骤: 安装Docker:K8S需要基于Docker来运行容器化应用程序。首先要在所有节点上安装Docker引擎。 安装Kubernetes Master:在集群中选择一台主机作为Master节点,安装K8S的控制平面组件,如AP

flume系列之:查看flume系统日志、查看统计flume日志类型、查看flume日志

遍历指定目录下多个文件查找指定内容 服务器系统日志会记录flume相关日志 cat /var/log/messages |grep -i oom 查找系统日志中关于flume的指定日志 import osdef search_string_in_files(directory, search_string):count = 0

嵌入式Openharmony系统构建与启动详解

大家好,今天主要给大家分享一下,如何构建Openharmony子系统以及系统的启动过程分解。 第一:OpenHarmony系统构建      首先熟悉一下,构建系统是一种自动化处理工具的集合,通过将源代码文件进行一系列处理,最终生成和用户可以使用的目标文件。这里的目标文件包括静态链接库文件、动态链接库文件、可执行文件、脚本文件、配置文件等。      我们在编写hellowor

LabVIEW FIFO详解

在LabVIEW的FPGA开发中,FIFO(先入先出队列)是常用的数据传输机制。通过配置FIFO的属性,工程师可以在FPGA和主机之间,或不同FPGA VIs之间进行高效的数据传输。根据具体需求,FIFO有多种类型与实现方式,包括目标范围内FIFO(Target-Scoped)、DMA FIFO以及点对点流(Peer-to-Peer)。 FIFO类型 **目标范围FIFO(Target-Sc