c语言->浅学结构体

2023-12-16 19:45
文章标签 语言 结构 浅学

本文主要是介绍c语言->浅学结构体,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

系列文章目录

文章目录


前言

✅作者简介:大家好,我是橘橙黄又青,一个想要与大家共同进步的男人😉😉

🍎个人主页:橘橙黄又青_C语言,函数,指针-CSDN博客

目的:学习结构体基础内容,联合体的内容和与结构体的区别,枚举类型的理解。

1. 结构体类型的声明

struct tag
{member-list;
}variable-list;
例如描述⼀个学⽣:
struct Stu
{char name[20];//名字int age;//年龄char sex[5];//性别char id[20];//学号
}; //分号不能丢

1.1.结构体变量的创建和初始化

#include <stdio.h>
struct Stu
{char name[20];//名字int age;//年龄char sex[5];//性别char id[20];//学号
};
int main()
{//按照结构体成员的顺序初始化struct Stu s = { "张三", 20, "男", "20230818001" };printf("name: %s\n", s.name);printf("age : %d\n", s.age);printf("sex : %s\n", s.sex);printf("id : %s\n", s.id);return 0;
}

也可以按照指定循序初始化

     struct Stu s2 = { .age = 18, .name = "lisi", .id = "20230818002", .sex = "⼥printf("name: %s\n", s2.name);printf("age : %d\n", s2.age);printf("sex : %s\n", s2.sex);printf("id : %s\n", s2.id);

1.2 结构的特殊声明

在声明结构的时候,可以不完全的声明看:

//匿名结构体类型
struct
{int a;char b;float c;
}x;
struct
{int a;char b;float c;
}a[20], *p;
上⾯的两个结构在声明的时候省略掉了结构体标签(tag)。
那么问题来了?
//在上⾯代码的基础上,下⾯的代码合法吗?
p = &x;
警告:
编译器会把上⾯的两个声明当成完全不同的两个类型,所以是⾮法的。
匿名的结构体类型,如果没有对结构体类型重命名的话,基本上 只能使⽤⼀次

1.3 结构的⾃引⽤

在结构中包含⼀个类型为该结构本⾝的成员是否可以呢?
⽐如,定义⼀个链表的节点:
struct Node
{int data;struct Node next;
};
上述代码正确吗?如果正确,那 sizeof(struct Node) 是多少?
仔细分析,其实是不⾏的,因为⼀个结构体中再包含⼀个同类型的结构体变量,这样结构体变量的⼤ ⼩(字节)就会⽆穷的⼤, 是不合理的
正确的⾃引⽤⽅式:
struct Node
{int data;struct Node* next;
};

这个到后面数据结构会细讲。、

1.4typedef 对匿名结构体类型重命名

在结构体⾃引⽤使⽤的过程中,夹杂了 typedef 对匿名结构体类型重命名,也容易引⼊问题,看看
下⾯的代码,可⾏吗?
typedef struct
{int data;Node* next;
}Node;
答案是不⾏的,因为Node是对前⾯的匿名结构体类型的重命名产⽣的, 但是在匿名结构体内部提前使⽤Node类型来创建成员变量 ,这是不⾏的。
解决⽅案如下:定义结构体不要使⽤匿名结构体了
typedef struct Node
{int data;struct Node* next;
}Node;

2. 结构体内存对⻬

现在我们深⼊讨论⼀个问题:计算结构体的⼤⼩。
这也是⼀个特别热⻔的考点: 结构体内存对⻬。

2.1 对⻬规则

⾸先得掌握结构体的 对⻬规则
1. 结构体的第⼀个成员对⻬到和结构体变量起始位置偏移量为0的地址处。
2. 其他成员变量要对⻬到某个数字(对⻬数)的整数倍的地址处。
对⻬数 = 编译器默认的⼀个对⻬数该成员变量⼤⼩的较⼩值
3. 结构体总⼤⼩为最⼤对⻬数(结构体中每个成员变量都有⼀个对⻬数,所有对⻬数中最⼤的)的 整数倍。
4. 如果嵌套了结构体的情况,嵌套的结构体成员对⻬到⾃⼰的成员中最⼤对⻬数的整数倍处,结构 体的整体⼤⼩就是所有最⼤对⻬数(含嵌套结构体中成员的对⻬数)的整数倍。

扩展:

- VS 中默认的值为 8
- Linux中 gcc 没有默认对⻬数,对⻬数就是成员⾃⾝的⼤⼩

 接下来用4个例子说明:

案例1:

struct S1
{char c1;int i;char c2;
};
printf("%d\n", sizeof(struct S1));//12

分析:

案例2:

struct S2
{char c1;char c2;int i;
};printf("%d\n", sizeof(struct S2));//8

分析:

 

案例3:

struct S3
{double d;char c;int i;
};
printf("%d\n", sizeof(struct S3));//32

分析:

 案例4:

练习4-结构体嵌套问题
struct S4
{char c1;struct S3 s3;double d;
};printf("%d\n", sizeof(struct S4));

分析:

2.2 为什么存在内存对⻬?  

1. 平台原因 (移植原因):
不是所有的硬件平台都能访问任意地址上的任意数据的;某些硬件平台只能在某些地址处取某些特定 类型的数据,否则抛出硬件异常。
2. 性能原因:
数据结构(尤其是栈)应该尽可能地在⾃然边界上对⻬。原因在于,为了访问未对⻬的内存,处理器需要 作两次内存访问;⽽对⻬的内存访问仅需要⼀次访问。假设⼀个处理器总是从内存中取8个字节,则地 址必须是8的倍数。如果我们能保证将所有的double类型的数据的地址都对⻬成8的倍数,那么就可以 ⽤⼀个内存操作来读或者写值了。否则,我们可能需要执⾏两次内存访问,因为对象可能被分放在两 个8字节内存块中。
总体来说:结构体的内存对⻬是拿空间来换取时间的做法。

2.3 修改默认对⻬数

#pragma 这个预处理指令,可以改变编译器的默认对⻬数,案例:

#include <stdio.h>
#pragma pack(1)//设置默认对⻬数为1
struct S
{char c1;int i;char c2;
};
#pragma pack()//取消设置的对⻬数,还原为默认
int main()
{printf("%d\n", sizeof(struct S));return 0;
}

这样就可以修改默认的对齐数了。

结构体在对⻬⽅式不合适的时候,我们可以⾃⼰更改默认对⻬数。

3. 结构体传参

struct S
{int data[1000];int num;
};
struct S s = {{1,2,3,4}, 1000};
//结构体传参//第1种
void print1(struct S s)
{printf("%d\n", s.num);
}//第2种
//结构体地址传参
void print2(struct S* ps)
{printf("%d\n", ps->num);
}
int main()
{print1(s); //传结构体print2(&s); //传地址return 0;
}
上⾯的 print1 print2 函数哪个好些?
答案是:⾸选print2函数。
原因:
函数传参的时候,参数是需要压栈,会有时间和空间上的系统开销。
如果传递⼀个结构体对象的时候,结构体过⼤,参数压栈的的系统开销⽐较⼤,所以会导致性能的下 降。

结论: 

 也就是说:如果结构体过⼤,开辟空间大,不利于计算机的结束效率。

结构体传参的时候,要传结构体的地址。

4. 结构体实现位段

位段的声明和结构是类似的,有两个不同:

1. 位段的成员 必须是 int、unsigned int 或signed int ,在C99中位段成员的类型也可以
选择其他类型。
2. 位段的成员名后边 有⼀个冒号和⼀个数字(bit位个数)
⽐如:
struct A
{int _a:2;int _b:5;int _c:10;int _d:30;
};
A就是⼀个位段类型。
那位段A所占内存的⼤⼩是多少?
printf("%d\n", sizeof(struct A));

这是为什么呢?接下来我们来学习位段的内存分配。

4.2 位段的内存分配

1. 位段的成员可以是 int unsigned int signed int 或者是 char 等类型
2. 位段的空间上是按照需要以4个字节( int )或者1个字节( char )的⽅式来开辟的。
3. 位段涉及很多不确定因素,位段是不跨平台的,注重可移植的程序应该避免使⽤位段。

举一个例子,位段是如何开辟空间的呢:

struct S
{char a:3;char b:4;char c:5;char d:4;
};struct S s = {0};s.a = 10;s.b = 12;s.c = 3;s.d = 4;

 分析:

总结:vs从左向右使用,遵循结构体对齐数原则,如果剩余的空间不够就浪费一定空间,开辟新空间。

4.3 位段的跨平台问题

1. int 位段被当成有符号数还是⽆符号数是不确定的。
2. 位段中最⼤位的数⽬不能确定。(16位机器最⼤16,32位机器最⼤32,写成27,在16位机器会 出问题。
3. 位段中的成员在内存中从左向右分配,还是从右向左分配标准尚未定义。
4. 当⼀个结构包含两个位段,第⼆个位段成员⽐较⼤,⽆法容纳于第⼀个位段剩余的位时,是舍弃 剩余的位还是利⽤,这是不确定的。

 总结:跟结构相⽐,位段可以达到同样的效果,并且可以很好的节省空间,但是有跨平台的问题存在。

4.4位段使⽤的注意事项

位段的⼏个成员共有同⼀个字节,这样有些成员的起始位置并不是某个字节的起始位置,那么这些位 置处是没有地址的。内存中每个字节分配⼀个地址,⼀个字节内部的bit位是没有地址的。
所以不能对位段的成员使⽤&操作符,这样就不能使⽤scanf直接给位段的成员输⼊值,只能是先输⼊ 放在⼀个变量中,然后赋值给位段的成员。
如下:
struct A
{int _a : 2;int _b : 5;int _c : 10;int _d : 30;
};
int main()
{struct A sa = {0};scanf("%d", &sa._b);//这是错误的//正确的⽰范int b = 0;scanf("%d", &b);sa._b = b;return 0;
}

结构体的学习就到这里了,都看到这里了,点一个赞吧,谢谢。 

这篇关于c语言->浅学结构体的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/501665

相关文章

python使用fastapi实现多语言国际化的操作指南

《python使用fastapi实现多语言国际化的操作指南》本文介绍了使用Python和FastAPI实现多语言国际化的操作指南,包括多语言架构技术栈、翻译管理、前端本地化、语言切换机制以及常见陷阱和... 目录多语言国际化实现指南项目多语言架构技术栈目录结构翻译工作流1. 翻译数据存储2. 翻译生成脚本

Python中顺序结构和循环结构示例代码

《Python中顺序结构和循环结构示例代码》:本文主要介绍Python中的条件语句和循环语句,条件语句用于根据条件执行不同的代码块,循环语句用于重复执行一段代码,文章还详细说明了range函数的使... 目录一、条件语句(1)条件语句的定义(2)条件语句的语法(a)单分支 if(b)双分支 if-else(

Go语言中三种容器类型的数据结构详解

《Go语言中三种容器类型的数据结构详解》在Go语言中,有三种主要的容器类型用于存储和操作集合数据:本文主要介绍三者的使用与区别,感兴趣的小伙伴可以跟随小编一起学习一下... 目录基本概念1. 数组(Array)2. 切片(Slice)3. 映射(Map)对比总结注意事项基本概念在 Go 语言中,有三种主要

使用Navicat工具比对两个数据库所有表结构的差异案例详解

《使用Navicat工具比对两个数据库所有表结构的差异案例详解》:本文主要介绍如何使用Navicat工具对比两个数据库test_old和test_new,并生成相应的DDLSQL语句,以便将te... 目录概要案例一、如图两个数据库test_old和test_new进行比较:二、开始比较总结概要公司存在多

C语言中自动与强制转换全解析

《C语言中自动与强制转换全解析》在编写C程序时,类型转换是确保数据正确性和一致性的关键环节,无论是隐式转换还是显式转换,都各有特点和应用场景,本文将详细探讨C语言中的类型转换机制,帮助您更好地理解并在... 目录类型转换的重要性自动类型转换(隐式转换)强制类型转换(显式转换)常见错误与注意事项总结与建议类型

Go语言利用泛型封装常见的Map操作

《Go语言利用泛型封装常见的Map操作》Go语言在1.18版本中引入了泛型,这是Go语言发展的一个重要里程碑,它极大地增强了语言的表达能力和灵活性,本文将通过泛型实现封装常见的Map操作,感... 目录什么是泛型泛型解决了什么问题Go泛型基于泛型的常见Map操作代码合集总结什么是泛型泛型是一种编程范式,允

Android kotlin语言实现删除文件的解决方案

《Androidkotlin语言实现删除文件的解决方案》:本文主要介绍Androidkotlin语言实现删除文件的解决方案,在项目开发过程中,尤其是需要跨平台协作的项目,那么删除用户指定的文件的... 目录一、前言二、适用环境三、模板内容1.权限申请2.Activity中的模板一、前言在项目开发过程中,尤

C语言小项目实战之通讯录功能

《C语言小项目实战之通讯录功能》:本文主要介绍如何设计和实现一个简单的通讯录管理系统,包括联系人信息的存储、增加、删除、查找、修改和排序等功能,文中通过代码介绍的非常详细,需要的朋友可以参考下... 目录功能介绍:添加联系人模块显示联系人模块删除联系人模块查找联系人模块修改联系人模块排序联系人模块源代码如下

基于Go语言实现一个压测工具

《基于Go语言实现一个压测工具》这篇文章主要为大家详细介绍了基于Go语言实现一个简单的压测工具,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录整体架构通用数据处理模块Http请求响应数据处理Curl参数解析处理客户端模块Http客户端处理Grpc客户端处理Websocket客户端

使用SQL语言查询多个Excel表格的操作方法

《使用SQL语言查询多个Excel表格的操作方法》本文介绍了如何使用SQL语言查询多个Excel表格,通过将所有Excel表格放入一个.xlsx文件中,并使用pandas和pandasql库进行读取和... 目录如何用SQL语言查询多个Excel表格如何使用sql查询excel内容1. 简介2. 实现思路3