谷歌Gemini API 应用(二):LangChain 加持

2023-12-16 17:15

本文主要是介绍谷歌Gemini API 应用(二):LangChain 加持,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

昨天我完成了谷歌Gemini API 应用(一):基础应用这篇博客,今天我们要在此基础上实现Gemini模型的Langchian加持,因为Gemini API刚发布没几天,所以langchian还没有来得及将其整合到现有的langchain包的架构内,langchain公司目前发布了需要独立安装的支持Gemini API的langchain包:“langchain-google-genai”, 相信过不了多久它就会被整合到现有的langchain包的架构内。

一,配置环境

我们需要安装以下python包:

pip -q install google-generativeai==0.3.1
pip -q install langchain-google-genai
pip -q install langchain_experimental langchain_core
pip -q install "langchain[docarray]"

二、配置API_KEY

当我们在Google AI Studio页面上创建了api key以后,我们就可以在本地通过该api_key来访问谷歌的Gemini Pro等模型,下面我们来导入本次实验需要使用的python包,并配置谷歌的api_key:

import google.generativeai as genai
from IPython.display import display
from IPython.display import Markdown
import osos.environ["GOOGLE_API_KEY"] = 'your_google_api_key'#填入自己的api_key

三、模型查看

下面我们查看一下本次实验需要使用的三个谷歌Gemini模型的具体信息:

genai.configure(api_key=os.environ["GOOGLE_API_KEY"])models = [m for m in genai.list_models() if m.name in (['models/gemini-pro','models/gemini-pro-vision','models/embedding-001'])]
models

在本次实验中我们会用到谷歌的三个模型分别是 语言模型gemini-pro,多模态模型gemini-pro-vision,嵌入模型embedding-001,上面我们列出来了这3个模型的具体信息包括具体的参数如输入,输出的token大小的限制等。下面我们先原生的Gemini的api来实现最基本的内容生成功能:

prompt = '你是谁,你能做什么?'model = genai.GenerativeModel('gemini-pro')response = model.generate_content(prompt)Markdown(response.text)

四、Gemini with LangChain

接下来我们通过LangChain来实现上述的内容生成功能:

from langchain_google_genai import ChatGoogleGenerativeAI,GoogleGenerativeAIEmbeddings
from langchain.vectorstores import DocArrayInMemorySearch
from langchain.prompts import ChatPromptTemplate
from langchain.schema.output_parser import StrOutputParserllm = ChatGoogleGenerativeAI(model="gemini-pro")
result = llm.invoke("LLM 是什么?")
Markdown(result.content)

这里我们看到通过langchian也很轻松的实现了gemini的内容生成的功能,不过这里需要说明的是我们在创建langchain的llm的时候我们并没有填写apk_key, 这是因为这里的gemini的llm它默认会去读取os的api_key的环境变量,因为在前面的代码中我们已经配置好了os的api_key,所以这里在创建llm时就无需填写api_key的参数了。

五、langchain的stream和batch

流式(stream)输出和批处理(batch)是langchain的两大优秀功能,流式输出可以给用户带来更好的用户体验,而批处理则可以提高用户的工作效率,因为它可以让llm同时处理多个问题,下来我们就来测试一下langchain的stream和batch能力:

for chunk in llm.stream("写一首关于躺平的打油诗。"):print(chunk.content)print("---------------------")

 因为流式输出每次只输出部分结果,所以响应时间比较短,这会给用户带来比较好的用户体验,下面我们看一下批处理:

results = llm.batch(["2+2等于几?","3+5等于几?",]
)
for res in results:print(res.content)

这里我们同时向llm询问了两个简单的数学问题,llm能够同时给出这些问题的正确答案,这说明llm具备同时处理多个问题的能力。

六、Chain的使用

在我之前的多篇博客中都详细介绍了在langchian中使用chain的方法,这里我们也要尝试一下在gemini模型环境下如何来使用chian。

model = ChatGoogleGenerativeAI(model="gemini-pro",temperature=0.7)prompt = ChatPromptTemplate.from_template("给我讲一个关于{topic}的笑话"
)output_parser = StrOutputParser()chain = prompt | model | output_parserresponse = chain.invoke({"topic": "躺平"})
print(response)

这里我们使用了langchain的LCEL语法创建了一个chian, 这和我们之前介绍langchian的博客中的方法是一样的,同样我们也能得到想要的结果,不过这里我们需要说明的是,这里我们在创建model的时候设置了参数temperature=0.7, temperature这个参数的取值范围为0-1,它表示生成结果的随机性,temperature越高,产生结果的随机性越大,因此当我们需要让llm讲故事或者讲笑话的时候,我们可以适当调高temperature的值,这样每次都会产生不一样的结果的概率就会比较大,而当我们需要llm做一些严谨的数学或者逻辑的推理/计算时,我们可以调低temperature的值,甚至可以将temperature设置为0,因为这时候我们需要llm给出严谨的唯一的答案。

七、简单的RAG

在我之前的使用langchain与你自己的数据对话系列的博客中详细介绍了RAG即检索增强生成(Retrieval Augmented Generation),现在我们也需要测试一下gemini模型的RAG能力,下面我们创建一个简单的向量数据库,并存储四条文本,然后我们向llm询问有关文本的内容:

embeddings = GoogleGenerativeAIEmbeddings(model="models/embedding-001")vectorstore = DocArrayInMemorySearch.from_texts(["Gemini Pro 是 GoogleDeepMind 开发的大型语言模型。","Gemini 可以是一个星座,也可以是一系列语言模型的名称。","人是由恐龙进化而来的。","熊猫喜欢吃天鹅肉。"],embedding=embeddings # passing in the embedder model
)retriever = vectorstore.as_retriever()

这里我们创建了一个内存向量数据库,并向其中存储了4条文本,然后使用了gemini的嵌入模型“embedding-001”作为文本嵌入工具,最后我们通过向量数据库创建了一个检索器retriver, 接下来我们可以通过检索器retriver来检索向量数据库中的相关文档:

retriever.get_relevant_documents("Gemini 是什么?")

 这里我们看到检索器retriver返回了相关的文档,并按文档的内容与问题的相关度对文档进行了排序。

retriever.get_relevant_documents("人从哪里来的?")

接下来我们来创建chian, 不过在创建chian之前我们需要创建prompt模板和RunnableMap,最后将它们组合成一个chain:

from langchain.schema.runnable import RunnableMap#创建prompt模板
template = """Answer the question a a full sentence, based only on the following context:
{context}
Question: {question}
"""#由模板生成prompt
prompt = ChatPromptTemplate.from_template(template)#创建chain
chain = RunnableMap({"context": lambda x: retriever.get_relevant_documents(x["question"]),"question": lambda x: x["question"]
}) | prompt | model | output_parser

当我们创建完chain以后就可以使用invoke方法来调用chain了:

#调用chain
chain.invoke({"question": "谁开发了 Gemini Pro?"})

 

chain.invoke({"question": "Gemini是什么?"})

 

chain.invoke({"question": "人是从哪里来的?"})

 

chain.invoke({"question": "熊猫喜欢吃什么?"})

八、PAL Chain

PALChain是Langchain中用于生成代码的程序辅助语言模型 (PAL) 解决方案。 PAL 是论文“Program-Aided Language Models”中描述的一种技术 (https://arxiv.org/pdf/2211.10435.pdf)下面我们使用langchian的PALChain来实现两个简单的数学逻辑推理题:

from langchain_experimental.pal_chain import PALChainmodel = ChatGoogleGenerativeAI(model="gemini-pro",temperature=0)pal_chain = PALChain.from_math_prompt(model, verbose=True)

 这里我们创建了一个model和pal_chain ,并设置了temperature=0, 这是因为我们接下来需要做严谨的逻辑推理,不需要llm产生随机性的结果,因此我们设置了temperature=0。

question ="食堂有23个苹果。如果午餐用了20个,之后又买了6个,那么食堂最后还剩多少个苹果?"
pal_chain.invoke(question)

 这里我们看到pal_chain在内部定义了一个solution的pyhon函数,并在该函数中做了逻辑推理,最后得到了正确的计算结果。

question ="""
如果小明早上 7:00 起床,并且他在家花了 1 小时吃早餐,
然后又花了 30 分钟步行去学校,小明几点到的学校?
"""
pal_chain.invoke(question)

 这里我们看到llm对时间的概念还存在一点问题,它并没有将最后的结果8.5转换成时间格式,而是直接以十进制的格式给出了最后的答案。

九、多模态支持

在langchain中使用多模态模型时我们需要用到langchian的HumanMessage类,它规定了一套与多模态模型对话的格式,下面我们将会将一个图片的url地址,然后询问gemini的多模态模型关于图片内容的问题:

import requests
from IPython.display import Imageimage_url = "https://upload.wikimedia.org/wikipedia/commons/e/e7/Everest_North_Face_toward_Base_Camp_Tibet_Luca_Galuzzi_2006.jpg"
content = requests.get(image_url).content
Image(content,width=300)

from langchain_core.messages import HumanMessage
from langchain_google_genai import ChatGoogleGenerativeAIllm = ChatGoogleGenerativeAI(model="gemini-pro-vision")# example
message = HumanMessage(content=[{"type": "text","text": "这个图片里有什么,它位于什么地方?",},  # You can optionally provide text parts{"type": "image_url","image_url": image_url},]
)llm.invoke([message])

 这里我们给gemini-pro-visio模型一张珠穆朗玛峰的图片url,然后询问图片里有什么,它位于什么地方,我们看到llm能准确识别图片中的内容,并且给出了珠穆朗玛峰的地理位置,效果还是不错的。

总结

今天我们学习了在langchain中使用gemin模型的的一些方法,总的来说使用方法和其他的模型如openai的模型的方法都是类似的。今天我们还尝试了langchain的stream和beath方法在gemini模型上的应用,还介绍了RAG、PAL Chain的应用,最后我们用一个简单例子介绍了langchain中使用gemini多模态模型的方法。希望今天的内容对大家学习gemini大模型有所帮助

参考资料

Google AI chat models | 🦜️🔗 Langchain

https://ai.google.dev/docs?hl=zh-cn

这篇关于谷歌Gemini API 应用(二):LangChain 加持的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/501249

相关文章

Java调用DeepSeek API的最佳实践及详细代码示例

《Java调用DeepSeekAPI的最佳实践及详细代码示例》:本文主要介绍如何使用Java调用DeepSeekAPI,包括获取API密钥、添加HTTP客户端依赖、创建HTTP请求、处理响应、... 目录1. 获取API密钥2. 添加HTTP客户端依赖3. 创建HTTP请求4. 处理响应5. 错误处理6.

Deepseek R1模型本地化部署+API接口调用详细教程(释放AI生产力)

《DeepseekR1模型本地化部署+API接口调用详细教程(释放AI生产力)》本文介绍了本地部署DeepSeekR1模型和通过API调用将其集成到VSCode中的过程,作者详细步骤展示了如何下载和... 目录前言一、deepseek R1模型与chatGPT o1系列模型对比二、本地部署步骤1.安装oll

浅析如何使用Swagger生成带权限控制的API文档

《浅析如何使用Swagger生成带权限控制的API文档》当涉及到权限控制时,如何生成既安全又详细的API文档就成了一个关键问题,所以这篇文章小编就来和大家好好聊聊如何用Swagger来生成带有... 目录准备工作配置 Swagger权限控制给 API 加上权限注解查看文档注意事项在咱们的开发工作里,API

一分钟带你上手Python调用DeepSeek的API

《一分钟带你上手Python调用DeepSeek的API》最近DeepSeek非常火,作为一枚对前言技术非常关注的程序员来说,自然都想对接DeepSeek的API来体验一把,下面小编就来为大家介绍一下... 目录前言免费体验API-Key申请首次调用API基本概念最小单元推理模型智能体自定义界面总结前言最

JAVA调用Deepseek的api完成基本对话简单代码示例

《JAVA调用Deepseek的api完成基本对话简单代码示例》:本文主要介绍JAVA调用Deepseek的api完成基本对话的相关资料,文中详细讲解了如何获取DeepSeekAPI密钥、添加H... 获取API密钥首先,从DeepSeek平台获取API密钥,用于身份验证。添加HTTP客户端依赖使用Jav

C#使用DeepSeek API实现自然语言处理,文本分类和情感分析

《C#使用DeepSeekAPI实现自然语言处理,文本分类和情感分析》在C#中使用DeepSeekAPI可以实现多种功能,例如自然语言处理、文本分类、情感分析等,本文主要为大家介绍了具体实现步骤,... 目录准备工作文本生成文本分类问答系统代码生成翻译功能文本摘要文本校对图像描述生成总结在C#中使用Deep

5分钟获取deepseek api并搭建简易问答应用

《5分钟获取deepseekapi并搭建简易问答应用》本文主要介绍了5分钟获取deepseekapi并搭建简易问答应用,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需... 目录1、获取api2、获取base_url和chat_model3、配置模型参数方法一:终端中临时将加

使用DeepSeek API 结合VSCode提升开发效率

《使用DeepSeekAPI结合VSCode提升开发效率》:本文主要介绍DeepSeekAPI与VisualStudioCode(VSCode)结合使用,以提升软件开发效率,具有一定的参考价值... 目录引言准备工作安装必要的 VSCode 扩展配置 DeepSeek API1. 创建 API 请求文件2.

JavaScript中的isTrusted属性及其应用场景详解

《JavaScript中的isTrusted属性及其应用场景详解》在现代Web开发中,JavaScript是构建交互式应用的核心语言,随着前端技术的不断发展,开发者需要处理越来越多的复杂场景,例如事件... 目录引言一、问题背景二、isTrusted 属性的来源与作用1. isTrusted 的定义2. 为

Python调用另一个py文件并传递参数常见的方法及其应用场景

《Python调用另一个py文件并传递参数常见的方法及其应用场景》:本文主要介绍在Python中调用另一个py文件并传递参数的几种常见方法,包括使用import语句、exec函数、subproce... 目录前言1. 使用import语句1.1 基本用法1.2 导入特定函数1.3 处理文件路径2. 使用ex