树的练习:信息学奥赛:1364:二叉树遍历(flist)

2023-12-15 06:30

本文主要是介绍树的练习:信息学奥赛:1364:二叉树遍历(flist),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

这篇关于树的练习:信息学奥赛:1364:二叉树遍历(flist)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/495459

相关文章

RabbitMQ练习(AMQP 0-9-1 Overview)

1、What is AMQP 0-9-1 AMQP 0-9-1(高级消息队列协议)是一种网络协议,它允许遵从该协议的客户端(Publisher或者Consumer)应用程序与遵从该协议的消息中间件代理(Broker,如RabbitMQ)进行通信。 AMQP 0-9-1模型的核心概念包括消息发布者(producers/publisher)、消息(messages)、交换机(exchanges)、

POJ 1364差分约束

给出n个变量,m个约束公式 Sa + Sa+1 + .... + Sa+b < ki or > ki ,叫你判断是否存在着解满足这m组约束公式。 Sa + Sa+1   +   .+ Sa+b =  Sum[a+b] - Sum[a-1]  . 注意加入源点n+1 。 public class Main {public static void main(Strin

leetcode105 从前序与中序遍历序列构造二叉树

根据一棵树的前序遍历与中序遍历构造二叉树。 注意: 你可以假设树中没有重复的元素。 例如,给出 前序遍历 preorder = [3,9,20,15,7]中序遍历 inorder = [9,3,15,20,7] 返回如下的二叉树: 3/ \9 20/ \15 7   class Solution {public TreeNode buildTree(int[] pr

【Rust练习】12.枚举

练习题来自:https://practice-zh.course.rs/compound-types/enum.html 1 // 修复错误enum Number {Zero,One,Two,}enum Number1 {Zero = 0,One,Two,}// C语言风格的枚举定义enum Number2 {Zero = 0.0,One = 1.0,Two = 2.0,}fn m

MySql 事务练习

事务(transaction) -- 事务 transaction-- 事务是一组操作的集合,是一个不可分割的工作单位,事务会将所有的操作作为一个整体一起向系统提交或撤销请求-- 事务的操作要么同时成功,要么同时失败-- MySql的事务默认是自动提交的,当执行一个DML语句,MySql会立即自动隐式提交事务-- 常见案例:银行转账-- 逻辑:A给B转账1000:1.查询

html css jquery选项卡 代码练习小项目

在学习 html 和 css jquery 结合使用的时候 做好是能尝试做一些简单的小功能,来提高自己的 逻辑能力,熟悉代码的编写语法 下面分享一段代码 使用html css jquery选项卡 代码练习 <div class="box"><dl class="tab"><dd class="active">手机</dd><dd>家电</dd><dd>服装</dd><dd>数码</dd><dd

生信代码入门:从零开始掌握生物信息学编程技能

少走弯路,高效分析;了解生信云,访问 【生信圆桌x生信专用云服务器】 : www.tebteb.cc 介绍 生物信息学是一个高度跨学科的领域,结合了生物学、计算机科学和统计学。随着高通量测序技术的发展,海量的生物数据需要通过编程来进行处理和分析。因此,掌握生信编程技能,成为每一个生物信息学研究者的必备能力。 生信代码入门,旨在帮助初学者从零开始学习生物信息学中的编程基础。通过学习常用

生信圆桌x生信分析平台:助力生物信息学研究的综合工具

介绍 少走弯路,高效分析;了解生信云,访问 【生信圆桌x生信专用云服务器】 : www.tebteb.cc 生物信息学的迅速发展催生了众多生信分析平台,这些平台通过集成各种生物信息学工具和算法,极大地简化了数据处理和分析流程,使研究人员能够更高效地从海量生物数据中提取有价值的信息。这些平台通常具备友好的用户界面和强大的计算能力,支持不同类型的生物数据分析,如基因组、转录组、蛋白质组等。

PHP实现二叉树遍历(非递归方式,栈模拟实现)

二叉树定义是这样的:一棵非空的二叉树由根结点及左、右子树这三个基本部分组成,根据节点的访问位置不同有三种遍历方式: ① NLR:前序遍历(PreorderTraversal亦称(先序遍历)) ——访问结点的操作发生在遍历其左右子树之前。 ② LNR:中序遍历(InorderTraversal) ——访问结点的操作发生在遍历其左右子树之中(间)。 ③ LRN:后序遍历(PostorderT

014.Python爬虫系列_解析练习

我 的 个 人 主 页:👉👉 失心疯的个人主页 👈👈 入 门 教 程 推 荐 :👉👉 Python零基础入门教程合集 👈👈 虚 拟 环 境 搭 建 :👉👉 Python项目虚拟环境(超详细讲解) 👈👈 PyQt5 系 列 教 程:👉👉 Python GUI(PyQt5)文章合集 👈👈 Oracle数据库教程:👉👉 Oracle数据库文章合集 👈👈 优