modelbox线程爆满宕机bug

2023-12-15 05:52

本文主要是介绍modelbox线程爆满宕机bug,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

该bug的解决需要特别感谢张同学。有了大佬的帮助,这个bug才得以解决。

问题现象

modelbox可以进行模型推理,但压测一段时间后,modelbox会宕机,并发生段错误。

“libgomp: Thread creation failed: Resource temporarily unavailable”

执行ps -eLf | wc -l发现线程数爆满,达到了3万个,说明在请求期间线程不断被创建,但没有被回收。下图是用并发数为1的请求连续压测modelbox,令modelbox持续执行推理10秒后打印的线程数,已经达到了14230个线程。

说明连续的请求会令modelbox创造很多新线程,但它们被服务后并没有被回收。

探究

笔者用的是modelbox官方在公司内网提供的基础镜像。为了试出错误原因,做过如下尝试:

尝试更换了基础镜像。在develop和runtime镜像之间切换,并不能解决问题。而且笔者使用的镜像版本发布于23年11月,不至于太旧。

更换过pytorch版本,官方推荐的pytorch版本有1.8,1.11和2.1,笔者用的是pytorch 1.11,与基础镜像中的python3.7相匹配,但pytorch2.1需要python3.8,与基础镜像包含的版本不匹配。因此最终没有更换pytorch版本。

更换torch_npu版本。从torch_npu的release界面可知,该插件1.11.0的小版本有从post1到post6,比如下图的torch_npu-1.11.0.post6-cp37-cp37m-linux_aarch64.whl

官方本来推荐使用与1.11.0搭配的是post1,笔者尝试换成了post6。发现并不能解决问题,而且还会引发版本不兼容的bug。

[2023-12-12 11:30:45,809][ERROR][ flow.cc:537 ] build graph failed, Invalid argument, build graph failed, please check graph config. -> open flowunit ‘infer’, type ‘cpu’ failed. -> import infer@InferFlowUnit failed: ImportError: /usr/local/lib64/python3.7/site-packages/torch_npu/lib/libtorch_npu.so: undefined symbol: _ZNK5torch8autograd4Node4nameEv

更换了所有依赖版本都无效,顺便发现该问题与tensor.npu()的调用相关:

  • 如果调用tensor.npu()相关的代码,线程就会爆满。
  • 如果去掉模型推理和.npu()相关代码,该问题就会消失。

或许tensor.npu()的执行时间长,会触发modelbox某种机制,令线程数自动扩容?

解决办法

从modelbox git仓库的issue,add: max_executor_thread_num 可见,官方在23年9月为modelbox的配置文件加了个参数max_executor_thread_num,添加后,执行线程池的容量会有所限制,避免无限增长。

设置方式如下,需要修改graph的.toml文件,加一个参数max_executor_thread_num=1,就可以限制线程无限增长了。这个数值之后可以再调整为10或100,优化性能。

[graph]
max_executor_thread_num=1
graphconf = """
digraph model_inference {

修改后重启容器,能在框架启动时的日志中看到该参数被打印。
请添加图片描述

压测一段时间后,线程数被控制住了,该问题终于被解决。

这篇关于modelbox线程爆满宕机bug的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/495343

相关文章

Spring Boot3虚拟线程的使用步骤详解

《SpringBoot3虚拟线程的使用步骤详解》虚拟线程是Java19中引入的一个新特性,旨在通过简化线程管理来提升应用程序的并发性能,:本文主要介绍SpringBoot3虚拟线程的使用步骤,... 目录问题根源分析解决方案验证验证实验实验1:未启用keep-alive实验2:启用keep-alive扩展建

Java终止正在运行的线程的三种方法

《Java终止正在运行的线程的三种方法》停止一个线程意味着在任务处理完任务之前停掉正在做的操作,也就是放弃当前的操作,停止一个线程可以用Thread.stop()方法,但最好不要用它,本文给大家介绍了... 目录前言1. 停止不了的线程2. 判断线程是否停止状态3. 能停止的线程–异常法4. 在沉睡中停止5

Java捕获ThreadPoolExecutor内部线程异常的四种方法

《Java捕获ThreadPoolExecutor内部线程异常的四种方法》这篇文章主要为大家详细介绍了Java捕获ThreadPoolExecutor内部线程异常的四种方法,文中的示例代码讲解详细,感... 目录方案 1方案 2方案 3方案 4结论方案 1使用 execute + try-catch 记录

前端bug调试的方法技巧及常见错误

《前端bug调试的方法技巧及常见错误》:本文主要介绍编程中常见的报错和Bug,以及调试的重要性,调试的基本流程是通过缩小范围来定位问题,并给出了推测法、删除代码法、console调试和debugg... 目录调试基本流程调试方法排查bug的两大技巧如何看控制台报错前端常见错误取值调用报错资源引入错误解析错误

Spring Boot 中正确地在异步线程中使用 HttpServletRequest的方法

《SpringBoot中正确地在异步线程中使用HttpServletRequest的方法》文章讨论了在SpringBoot中如何在异步线程中正确使用HttpServletRequest的问题,... 目录前言一、问题的来源:为什么异步线程中无法访问 HttpServletRequest?1. 请求上下文与线

在 Spring Boot 中使用异步线程时的 HttpServletRequest 复用问题记录

《在SpringBoot中使用异步线程时的HttpServletRequest复用问题记录》文章讨论了在SpringBoot中使用异步线程时,由于HttpServletRequest复用导致... 目录一、问题描述:异步线程操作导致请求复用时 Cookie 解析失败1. 场景背景2. 问题根源二、问题详细分

Java多线程父线程向子线程传值问题及解决

《Java多线程父线程向子线程传值问题及解决》文章总结了5种解决父子之间数据传递困扰的解决方案,包括ThreadLocal+TaskDecorator、UserUtils、CustomTaskDeco... 目录1 背景2 ThreadLocal+TaskDecorator3 RequestContextH

java父子线程之间实现共享传递数据

《java父子线程之间实现共享传递数据》本文介绍了Java中父子线程间共享传递数据的几种方法,包括ThreadLocal变量、并发集合和内存队列或消息队列,并提醒注意并发安全问题... 目录通过 ThreadLocal 变量共享数据通过并发集合共享数据通过内存队列或消息队列共享数据注意并发安全问题总结在 J

异步线程traceId如何实现传递

《异步线程traceId如何实现传递》文章介绍了如何在异步请求中传递traceId,通过重写ThreadPoolTaskExecutor的方法和实现TaskDecorator接口来增强线程池,确保异步... 目录前言重写ThreadPoolTaskExecutor中方法线程池增强总结前言在日常问题排查中,

Springboot的ThreadPoolTaskScheduler线程池轻松搞定15分钟不操作自动取消订单

《Springboot的ThreadPoolTaskScheduler线程池轻松搞定15分钟不操作自动取消订单》:本文主要介绍Springboot的ThreadPoolTaskScheduler线... 目录ThreadPoolTaskScheduler线程池实现15分钟不操作自动取消订单概要1,创建订单后