本文主要是介绍深入研究Netty框架之ByteBuf类继承结构,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!
ByteBuf类继承关系图如下:
ReferenceCounted:对象引用计数器,初始化ReferenceCounted对象时,引用数量refCnt为1,调用retain()可增加refCnt,release()用于减少refCnt。refCnt为1时,说明对象实际不可达,release()方法将立即调用deallocate()释放对象。如果refCnt为0,说明对象被错误的引用。在AbstractReferenceCountedByteBuf源码分析小节将详细介绍ReferenceCounted的原理。
ByteBuf:实现接口ReferenceCounted和Comparable,实现ReferenceCounted使得ByteBuf具备引用计数的能力,方便跟踪ByteBuf对象分配和释放。
- ByteBuf直接子类
EmptyByteBuf:用于构建空ByteBuf对象,capacity和maxCapacity均为0。
ReplayingDecoderBuffer:用于构建在IO阻塞条件下实现无阻塞解码的特殊ByteBuf对象,当要读取的数据还未接收完全时,抛出异常,交由ReplayingDecoder处理。
SwappedByteBuf:用于构建具有切换字节顺序功能的ByteBuf对象,默认ByteBuf对象使用BIG_ENDIAN(大字节序)存储数据,SwappedByteBuf可以在BIG_ENDIAN和LITTLE_ENDIAN之间自由切换。TCP/IP各层协议均采用网络字节序(BIG_ENDIAN),关于字节序的更多内容不详细介绍。
WrappedByteBuf:用于装饰ByteBuf对象,主要有AdvancedLeakAwareByteBuf、SimpleLeakAwareByteBuf和UnreleasableByteBuf三个子类。这里WrappedByteBuf使用装饰者模式装饰ByteBuf对象,AdvancedLeakAwareByteBuf用于对所有操作记录堆栈信息,方便监控内存泄漏;SimpleLeakAwareByteBuf只记录order(ByteOrder endianness)的堆栈信息;UnreleasableByteBuf用于阻止修改对象引用计数器refCnt的值。
AbstractByteBuf:提供ByteBuf的默认实现,同时组合ResourceLeakDetector和SwappedByteBuf的能力,ResourceLeakDetector是内存泄漏检测工具,SwappedByteBuf用于字节序不同时转换字节序。
- AbstractByteBuf直接子类
AbstractDerivedByteBuf:提供派生ByteBuf的默认实现,主要有DuplicatedByteBuf、ReadOnlyByteBuf和SlicedByteBuf。
DuplicatedByteBuf使用装饰者模式创建ByteBuf的复制对象,使得复制后的对象与原对象共享缓冲区的内容,但是独立维护自己的readerIndex和writerIndex。部分源码如下:
private final ByteBuf buffer;public DuplicatedByteBuf(ByteBuf buffer) {super(buffer.maxCapacity());//共享缓冲区内容if (buffer instanceof DuplicatedByteBuf) {this.buffer = ((DuplicatedByteBuf) buffer).buffer;} else {this.buffer = buffer;}//调用自身的setIndex方法维护readerIndex和writerIndexsetIndex(buffer.readerIndex(), buffer.writerIndex());}//所有操作都是通过调用被装饰对象buffer的相应方法实现@Overridepublic ByteBuf getBytes(int index, ByteBuf dst, int dstIndex, int length) {buffer.getBytes(index, dst, dstIndex, length);return this;}@Overridepublic ByteBuf getBytes(int index, byte[] dst, int dstIndex, int length) {buffer.getBytes(index, dst, dstIndex, length);return this;}
ReadOnlyByteBuf使用装饰者模式创建ByteBuf的只读对象,该只读对象与原对象共享缓冲区的内容,但是独立维护自己的readerIndex和writerIndex,之后所有的写操作都被限制;部分源码如下:
private final ByteBuf buffer;public ReadOnlyByteBuf(ByteBuf buffer) {super(buffer.maxCapacity());if (buffer instanceof ReadOnlyByteBuf || buffer instanceof DuplicatedByteBuf) {this.buffer = buffer.unwrap();} else {this.buffer = buffer;}setIndex(buffer.readerIndex(), buffer.writerIndex());}@Overrideprotected void _setLong(int index, long value) {throw new ReadOnlyBufferException();}@Overridepublic int setBytes(int index, InputStream in, int length) {throw new ReadOnlyBufferException();}
SlicedByteBuf使用装饰者模式创建ByteBuf的一个子区域ByteBuf对象,返回的ByteBuf对象与当前ByteBuf对象共享缓冲区的内容,但是维护自己独立的readerIndex和writerIndex,允许写操作。
AbstractReferenceCountedByteBuf:提供修改对象引用计数器相关操作的默认实现。
- AbstractReferenceCountedByteBuf直接子类
CompositeByteBuf:用于将多个ByteBuf组合在一起,形成一个虚拟的ByteBuf对象,支持读写和动态扩展。内部使用List<Component>组合多个ByteBuf。推荐使用ByteBufAllocator的compositeBuffer()方法,Unpooled的工厂方法compositeBuffer()或wrappedBuffer(ByteBuf... buffers)创建CompositeByteBuf对象。
FixedCompositeByteBuf:用于将多个ByteBuf组合在一起,形成一个虚拟的只读ByteBuf对象,不允许写入和动态扩展。内部使用Object[]将多个ByteBuf组合在一起,一旦FixedCompositeByteBuf对象构建完成,则不会被更改。
PooledByteBuf<T>:基于内存池的ByteBuf,主要为了重用ByteBuf对象,提升内存的使用效率;适用于高负载,高并发的应用中。主要有PooledDirectByteBuf,PooledHeapByteBuf,PooledUnsafeDirectByteBuf三个子类,PooledDirectByteBuf是在堆外进行内存分配的内存池ByteBuf,PooledHeapByteBuf是基于堆内存分配内存池ByteBuf,PooledUnsafeDirectByteBuf也是在堆外进行内存分配的内存池ByteBuf,区别在于PooledUnsafeDirectByteBuf内部使用基于PlatformDependent相关操作实现ByteBuf,具有平台相关性。
ReadOnlyByteBufferBuf:只读ByteBuf,内部持有ByteBuffer对象,相关操作委托给ByteBuffer实现,该ByteBuf限内部使用,ReadOnlyByteBufferBuf还有一个子类ReadOnlyUnsafeDirectByteBuf。
UnpooledDirectByteBuf:在堆外进行内存分配的非内存池ByteBuf,内部持有ByteBuffer对象,相关操作委托给ByteBuffer实现。
UnpooledHeapByteBuf:基于堆内存分配非内存池ByteBuf,即内部持有byte数组。
UnpooledUnsafeDirectByteBuf:与UnpooledDirectByteBuf相同,区别在于UnpooledUnsafeDirectByteBuf内部使用基于PlatformDependent相关操作实现ByteBuf,具有平台相关性。
到此,ByteBuf继承家族的各个成员对应的相关功能已介绍完成。
总结:
从内存分配角度看,ByteBuf主要分为两类:
- 堆内存(HeapByteBuf)字节缓冲区:特点是内存的分配和回收速度快,可以被JVM自动回收;缺点是进行Socket的I/O读写需要额外进行一次内存复制,即将内存对应的缓冲区复制到内核Channel中,性能会有一定程度下降。
- 直接内存(DirectByteBuf)字节缓冲区:在堆外进行内存分配,相比堆内存,分配和回收速度稍慢。但用于Socket的I/O读写时,少一次内存复制,速度比堆内存字节缓冲区快。
经验表明,在I/O通信线程的读写缓冲区使用DirectByteBuf,后端业务消息的编解码模块使用HeapByteBuf,这样组合可以达到性能最优。
从内存回收角度看,ByteBuf也分为两类:
- 基于内存池的ByteBuf:优点是可以重用ByteBuf对象,通过自己维护一个内存池,可以循环利用创建的ByteBuf,提升内存的使用效率,降低由于高负载导致的频繁GC。适用于高负载,高并发的应用中。推荐使用基于内存池的ByteBuf。
- 非内存池的ByteBuf:优点是管理和维护相对简单。
本节重点介绍ByteBuf继承家族的各个成员,详细功能后续将通过源码讲解,下一节介绍AbstractByteBuf源码。
欢迎指出本文有误的地方,转载请注明原文出处https://my.oschina.net/7001/blog/743240
这篇关于深入研究Netty框架之ByteBuf类继承结构的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!