Backtrader 文档学习-Platform Concepts

2023-12-14 04:20

本文主要是介绍Backtrader 文档学习-Platform Concepts,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

Backtrader 文档学习-Platform Concepts

1.开始之前

导入backtrader ,以及backtrader 的指示器、数据反馈的模块 。

import backtrader as bt
import backtrader.indicators as btind
import backtrader.feeds as btfeeds

看看btind模块下有什么方法和属性:

obj_str = ''
for i in dir(btind):if i[:1] != '_' :obj_str += i + ','    
print(obj_str)

指示器中的指标函数很多,方法属性如下:

ADX,ADXR,AO,APO,ATR,AbsPriceOsc,AbsolutePriceOscillator,AccDeOsc,AccelerationDecelerationOscillator,Accum,AdaptiveMovingAverage,AdaptiveMovingAverageEnvelope,AdaptiveMovingAverageOsc,AdaptiveMovingAverageOscillator,All,AllN,And,Any,AnyN,ApplyN,ArithmeticMean,AroonDown,AroonIndicator,AroonOsc,AroonOscillator,AroonUp,AroonUpDown,AroonUpDownOsc,AroonUpDownOscillator,Average,AverageDirectionalMovementIndex,AverageDirectionalMovementIndexRating,AverageTrueRange,AverageWeighted,AwesomeOsc,AwesomeOscillator,BBands,BaseApplyN,BollingerBands,BollingerBandsPct,CCI,Cmp,CmpEx,CointN,CommodityChannelIndex,CrossDown,CrossOver,CrossUp,CumSum,CumulativeSum,DEMA,DEMAEnvelope,DEMAOsc,DEMAOscillator,DI,DM,DMA,DMAEnvelope,DMAOsc,DMAOscillator,DMI,DPO,DV2,DemarkPivotPoint,DetrendedPriceOscillator,DicksonMA,DicksonMAEnvelope,DicksonMAOsc,DicksonMAOscillator,DicksonMovingAverage,DicksonMovingAverageEnvelope,DicksonMovingAverageOsc,DicksonMovingAverageOscillator,DirectionalIndicator,DirectionalMovement,DirectionalMovementIndex,DivByZero,DivZeroByZero,DoubleExponentialMovingAverage,DoubleExponentialMovingAverageEnvelope,DoubleExponentialMovingAverageOsc,DoubleExponentialMovingAverageOscillator,DownDay,DownDayBool,DownMove,EC,ECEnvelope,ECOsc,ECOscillator,EMA,EMAEnvelope,EMAOsc,EMAOscillator,Envelope,EnvelopeMixIn,ErrorCorrecting,ErrorCorrectingEnvelope,ErrorCorrectingOsc,ErrorCorrectingOscillator,ExpSmoothing,ExpSmoothingDynamic,ExponentialMovingAverage,ExponentialMovingAverageEnvelope,ExponentialMovingAverageOsc,ExponentialMovingAverageOscillator,ExponentialSmoothing,ExponentialSmoothingDynamic,FibonacciPivotPoint,FindFirstIndex,FindFirstIndexHighest,FindFirstIndexLowest,FindLastIndex,FindLastIndexHighest,FindLastIndexLowest,HMA,HMAEnvelope,HMAOsc,HMAOscillator,HeikinAshi,Highest,HullMA,HullMAEnvelope,HullMAOsc,HullMAOscillator,HullMovingAverage,HullMovingAverageEnvelope,HullMovingAverageOsc,HullMovingAverageOscillator,Hurst,HurstExponent,Ichimoku,If,Indicator,KAMA,KAMAEnvelope,KAMAOsc,KAMAOscillator,KST,KnowSureThing,LAGF,LRSI,LaguerreFilter,LaguerreRSI,LineActions,List,Logic,Lowest,MACD,MACDHisto,MACDHistogram,MAXINT,Max,MaxN,Mean,MeanDev,MeanDeviation,MetaMovAvBase,Min,MinN,MinusDI,MinusDirectionalIndicator,ModifiedMovingAverage,ModifiedMovingAverageEnvelope,ModifiedMovingAverageOsc,ModifiedMovingAverageOscillator,Momentum,MomentumOsc,MomentumOscillator,MovAv,MovingAverage,MovingAverageAdaptive,MovingAverageAdaptiveEnvelope,MovingAverageAdaptiveOsc,MovingAverageAdaptiveOscillator,MovingAverageBase,MovingAverageDoubleExponential,MovingAverageDoubleExponentialEnvelope,MovingAverageDoubleExponentialOsc,MovingAverageDoubleExponentialOscillator,MovingAverageExponential,MovingAverageExponentialEnvelope,MovingAverageExponentialOsc,MovingAverageExponentialOscillator,MovingAverageSimple,MovingAverageSimpleEnvelope,MovingAverageSimpleOsc,MovingAverageSimpleOscillator,MovingAverageSmoothed,MovingAverageSmoothedEnvelope,MovingAverageSmoothedOsc,MovingAverageSmoothedOscillator,MovingAverageTripleExponential,MovingAverageTripleExponentialEnvelope,MovingAverageTripleExponentialOsc,MovingAverageTripleExponentialOscillator,MovingAverageWeighted,MovingAverageWeightedEnvelope,MovingAverageWeightedOsc,MovingAverageWeightedOscillator,MovingAverageWilder,MovingAverageWilderEnvelope,MovingAverageWilderOsc,MovingAverageWilderOscillator,MultiLogic,MultiLogicReduce,NZD,NonZeroDifference,OLS_BetaN,OLS_Slope_InterceptN,OLS_TransformationN,OperationN,Or,Oscillator,OscillatorMixIn,PGO,PPO,PPOShort,PSAR,ParabolicSAR,PctChange,PctRank,PercPriceOsc,PercPriceOscShort,PercentChange,PercentRank,PercentagePriceOscillator,PercentagePriceOscillatorShort,PeriodN,PivotPoint,PlusDI,PlusDirectionalIndicator,PrettyGoodOsc,PrettyGoodOscillator,PriceOsc,PriceOscillator,RMI,ROC,ROC100,RSI,RSI_Cutler,RSI_EMA,RSI_SMA,RSI_SMMA,RSI_Safe,RSI_Wilder,RateOfChange,RateOfChange100,Reduce,ReduceN,RelativeMomentumIndex,RelativeStrengthIndex,SMA,SMAEnvelope,SMAOsc,SMAOscillator,SMMA,SMMAEnvelope,SMMAOsc,SMMAOscillator,SimpleMovingAverage,SimpleMovingAverageEnvelope,SimpleMovingAverageOsc,SimpleMovingAverageOscillator,SmoothedMovingAverage,SmoothedMovingAverageEnvelope,SmoothedMovingAverageOsc,SmoothedMovingAverageOscillator,StandardDeviation,StdDev,Stochastic,StochasticFast,StochasticFull,StochasticSlow,Sum,SumN,TEMA,TEMAEnvelope,TEMAOsc,TEMAOscillator,TR,TRIX,TSI,TripleExponentialMovingAverage,TripleExponentialMovingAverageEnvelope,TripleExponentialMovingAverageOsc,TripleExponentialMovingAverageOscillator,Trix,TrixSignal,TrueHigh,TrueLow,TrueRange,TrueStrengthIndicator,UltimateOscillator,UpDay,UpDayBool,UpMove,Vortex,WMA,WMAEnvelope,WMAOsc,WMAOscillator,WeightedAverage,WeightedMovingAverage,WeightedMovingAverageEnvelope,WeightedMovingAverageOsc,WeightedMovingAverageOscillator,WilderMA,WilderMAEnvelope,WilderMAOsc,WilderMAOscillator,WilliamsAD,WilliamsR,ZLEMA,ZLEMAEnvelope,ZLEMAOsc,ZLEMAOscillator,ZLInd,ZLIndEnvelope,ZLIndOsc,ZLIndOscillator,ZLIndicator,ZLIndicatorEnvelope,ZLIndicatorOsc,ZLIndicatorOscillator,ZeroLagEma,ZeroLagEmaEnvelope,ZeroLagEmaOsc,ZeroLagEmaOscillator,ZeroLagExponentialMovingAverage,ZeroLagExponentialMovingAverageEnvelope,ZeroLagExponentialMovingAverageOsc,ZeroLagExponentialMovingAverageOscillator,ZeroLagIndicator,ZeroLagIndicatorEnvelope,ZeroLagIndicatorOsc,ZeroLagIndicatorOscillator,absolute_import,accdecoscillator,alias,aroon,atr,awesomeoscillator,basicops,bollinger,bt,cci,cmp,contrib,crossover,dema,deviation,directionalmove,division,dma,dpo,dv2,ema,envelope,functools,haD,haDelta,hadelta,heikinashi,hma,hurst,ichimoku,kama,kst,linename,lrsi,mabase,macd,map,math,module,momentum,movav,movname,newaliases,newcls,newclsdct,newclsdoc,newclsname,ols,operator,oscillator,percentchange,percentrank,pivotpoint,prettygoodoscillator,priceoscillator,print_function,psar,range,rmi,rsi,sma,smma,stochastic,suffix,sys,trix,tsi,ultimateoscillator,unicode_literals,williams,with_metaclass,wma,zlema,zlind,

也可以直接通过bt导入下面的模块feeds indicators

import backtrader as bt
thefeed = bt.feeds.OneOfTheFeeds(...)
theind = bt.indicators.SimpleMovingAverage(...)

2.数据读入-无处不在

所有的策略都基于数据,平台端用户不用考虑如何接收数据。

Data Feeds are automagically provided member variables to the strategy in the form of an array and shortcuts to the array positions

数据源是以数组的形式或者对数组位置快捷访问的方式提供给strategy(策略)作为成员变量使用的。
这句话需要好好理解。

数组的形式: self.datas[0].close
数组位置快捷访问:self.data0.close

class MyStrategy(bt.Strategy):params = dict(period=20)def __init__(self):sma = btind.SimpleMovingAverage(self.datas[0], period=self.params.period)print(sma)# Keep a reference to the "close" line in the data[0] dataseriesself.dataclose = self.datas[0].closeself.dataclosetest = self.data0.closeprint('-'* 20,'close','-' * 20 )print(self.dataclose[0])print(self.dataclosetest[0])        

执行结果
sma 的数据类型backtrader.indicators.sma.SimpleMovingAverage

<backtrader.indicators.sma.SimpleMovingAverage object at 0x7f616bd7c820>
-------------------- close --------------------
133.01
133.01

Data Feeds get added to the platform and they will show up inside the strategy in the sequential order in which they were added to the system.

SQL语句按日期排序,不论是正序还是逆序desc ,到BackTrader中,都是按时间倒序排列,[0]是最后的日期。

3.快捷访问数据

self.datas数组项可以通过自动成员变量直接访问:

self.data targets self.datas[0]
self.dataX targets self.datas[X]

下面好好测试一下BackTrader的数据访问,数据之间的关系。

#<class 'backtrader.linebuffer.LineBuffer'>
print(type(cerebro.datas[0].close))#<class 'backtrader.feeds.pandafeed.PandasData'>
print(type(cerebro.datas[0]))#<class 'list'>
print(type(cerebro.datas))# ('close', 'low', 'high', 'open', 'volume', 'openinterest', 'datetime')
print(cerebro.datas[0].getlinealiases())

结果如下:

<class 'backtrader.linebuffer.LineBuffer'>
<class 'backtrader.feeds.pandafeed.PandasData'>
<class 'list'>
('close', 'low', 'high', 'open', 'volume', 'openinterest', 'datetime')

在这里插入图片描述

说明:

  • 1、cerebro.datas数据集的类型是 <class ‘list’> ,对应载入cerebro的股票数据,可以是多个股票,就是股票的集合。
  • 2、cerebro.datas[0]是<class ‘backtrader.feeds.pandafeed.PandasData’>,其实与dataframe类似,包括以下列:(‘close’, ‘low’, ‘high’, ‘open’, ‘volume’, ‘openinterest’, ‘datetime’)的集合。
    -3、cerebro.datas[0].close就是dataframe的一列数据,BackTrader称之为Line <class ‘backtrader.linebuffer.LineBuffer’> 。
  • 4、cerebro.datas[0].close[0] 就是访问到数据的元素,实际数据值。
  • 5、cerebro.datas[0]都是按时间顺序逆序的,第一个元素index是0 ,下一个是-1 ,以此类推。
  • 6、时间序列必须用内置方法处理
print(cerebro.datas[0].datetime[0]) 
print(pd.to_datetime(cerebro.datas[0].datetime[0],unit='s'))
print(bt.num2date(cerebro.datas[0].datetime[0]))

结果如下:

737424.0
1970-01-09 12:50:24
2019-12-31 00:00:00

直接访问datetime列 ,是浮点数。
开始用pd.to_datetime 函数,转换的时间是1970年,迷惑很长时间。

重要:必须用自带的函数转换时间 bt.num2date()!!!

4.默认数据载入

class MyStrategy(bt.Strategy):params = dict(period=20)def __init__(self):sma = btind.SimpleMovingAverage(period=self.params.period)...

self.data has been completely removed from the invocation of SimpleMovingAverage. If this is done, the indicator (in this case the SimpleMovingAverage) receives the first data of the object in which is being created (the Strategy), which is self.data (aka self.data0 or self.datas[0])

默认使用的self是什么?
如果只有一个数据源,cerebro只载入一个股票数据,不用显式指定,系统会缺省使用self.datas[0],self.data=self.data0=self.datas[0] ,也就是第一个加入的数据源 。所以说self.data 就没有显式出现在调用SMA指示器 。
如果有多个载入数据,还是注明好,清晰可读。

5. 一切都是数据载入

class MyStrategy(bt.Strategy):#定义策略全局参数params = dict(period1=20, period2=25, period3=10, period4)def __init__(self):# 使用SMA指示器载入datas[0],使用参数1sma1 = btind.SimpleMovingAverage(self.datas[0], period=self.p.period1)# This 2nd Moving Average operates using sma1 as "data"# 使用第一个SMA指示器数据再次作为SMA的数据载入,使用参数2sma2 = btind.SimpleMovingAverage(sma1, period=self.p.period2)# New data created via arithmetic operation# 随意的计算  something = sma2 - sma1 + self.data.close# This 3rd Moving Average operates using something  as "data"# 随意计算的结果作为第三次SMA数据载入,使用参数3sma3 = btind.SimpleMovingAverage(something, period=self.p.period3)# Comparison operators work too ...# 比较后取大值 ,有点疑问 ?greater = sma3 > sma1# Pointless Moving Average of True/False values but valid# This 4th Moving Average operates using greater  as "data"# 比较后结果第四次载入SMA指示器,使用参数4sma3 = btind.SimpleMovingAverage(greater, period=self.p.period4)...

总而言之,所有的数据转换变化后,都可以作为数据载入,再次进行运算。

6. 参数

在backtrader中,所有的类都按照如下方法来使用参数:

1、声明一个带有缺省值的参数作为类的一个属性(元组或者字典结构)。
2、关键字类型参数(kwargs)会扫描匹配的参数,将值赋值给对应的参数,完成后从kwargs删除。
3、这些参数都可以在类实例中通过访问成员变量self.params(可以简写为self.p)来使用。
使用元组 tuple

class MyStrategy(bt.Strategy):params = (('period', 20),)def __init__(self):sma = btind.SimpleMovingAverage(self.data, period=self.p.period)

使用字典dict

class MyStrategy(bt.Strategy):params = dict(period=20)def __init__(self):sma = btind.SimpleMovingAverage(self.data, period=self.p.period)

7.Lines 关键的概念

从使用用户(通常是strategy)的角度来说,就是包括一个或多个line,这些line是一系列的数据,在图中可以形成一条线(line)。line是数组,不是pd.series ,没有index 。

class MyStrategy(bt.Strategy):params = dict(period=20)def __init__(self):self.movav = btind.SimpleMovingAverage(self.data, period=self.p.period)def next(self):if self.movav.lines.sma[0] > self.data.lines.close[0]:print(round(self.movav.lines.sma[0],2),self.data.lines.close[0],'Simple Moving Average is greater than the closing price')

执行结果:

83.34 74.4 Simple Moving Average is greater than the closing price
83.16 75.1 Simple Moving Average is greater than the closing price
83.01 76.6 Simple Moving Average is greater than the closing price
82.92 80.1 Simple Moving Average is greater than the closing price
82.82 79.64 Simple Moving Average is greater than the closing price
82.69 78.52 Simple Moving Average is greater than the closing price
82.36 76.1 Simple Moving Average is greater than the closing price
81.87 74.28 Simple Moving Average is greater than the closing price
... ... 

self.movav:这个是一个SimpleMovingAverage的指标(indicator),本身就包含一个具有lines属性的sma。这里特殊注意一下,计算SimpleMovingAverage使用的self.data,没有指定具体Line的话,缺省用的是close价进行计算。

简单的方法访问lines:

xxx.lines 可以简化为 xxx.l
xxx.lines.name可以简化为xxx.lines_name

一些复杂的对象也可以通过如下方法访问:

self.data_name 等于 self.data.lines.name

如果有多个变量的话,也可以self.data1_name 替代self.data1.lines.name

此外,Line的名字也可以通过如下方式访问:

self.data.close and self.movav.sma

class MyStrategy(bt.Strategy):params = dict(period=20)def __init__(self):self.movav = btind.SimpleMovingAverage(self.data, period=self.p.period)def next(self):# 数据集0 收盘价在110和120if (self.datas[0].close[0] > 110.0) & (self.datas[0].close[0] < 120.0):print(bt.num2date(self.datas[0].datetime[0]),'self.datas[0].close[0] > 110.0')# 数据集1 收盘价在110和120    if self.datas[1].close[0] > 9.0:print(bt.num2date(self.datas[1].datetime[0]),'self.datas[1].close[0] > 9.0')# 数据集SMA 收盘价在88和90if (self.movav.lines.sma[0] > 88) & (self.movav.sma[0] < 90) :print(round(self.movav.lines.sma[0],2),'self.movav.lines.sma[0] > 88')print(self.movav.getlinealiases())#print(cerebro.datas[0].getlinealiases())

结果如下:

2018-04-18 00:00:00 self.datas[1].close[0] > 9.0
2018-04-24 00:00:00 self.datas[1].close[0] > 9.0
2018-04-25 00:00:00 self.datas[1].close[0] > 9.0
2018-04-26 00:00:00 self.datas[1].close[0] > 9.0
2019-04-09 00:00:00 self.datas[0].close[0] > 110.0
88.78 self.movav.lines.sma[0] > 88
('sma',)
89.64 self.movav.lines.sma[0] > 88
('sma',)
2019-06-20 00:00:00 self.datas[0].close[0] > 110.0
2019-06-21 00:00:00 self.datas[0].close[0] > 110.0
2019-06-24 00:00:00 self.datas[0].close[0] > 110.0
2019-06-25 00:00:00 self.datas[0].close[0] > 110.0
2019-06-26 00:00:00 self.datas[0].close[0] > 110.0
2019-06-27 00:00:00 self.datas[0].close[0] > 110.0
2019-06-28 00:00:00 self.datas[0].close[0] > 110.0
2019-07-24 00:00:00 self.datas[0].close[0] > 110.0
2019-08-01 00:00:00 self.datas[0].close[0] > 110.0
2019-08-02 00:00:00 self.datas[0].close[0] > 110.0
2019-08-05 00:00:00 self.datas[0].close[0] > 110.0
2019-08-07 00:00:00 self.datas[0].close[0] > 110.0
2019-08-09 00:00:00 self.datas[0].close[0] > 110.0

需要好好说明一下:

  • 简写示例

if (self.movav.lines.sma[0] > 88) & (self.movav.sma[0] < 90) :

  • 多数据源

两种方式引用
self.movav.lines.sma[0] = self.movav.sma[0]

cerebro载入两个股票数据。
特别注意:调用datas ,有s
self.datas[0].close[0]
self.datas[0].close[0]
self.datas[0].close[0]

  • SMA指示器调用后,是数组,没有日期字段!!!
    开始也想增加打印日期,

print(bt.num2date(self.movav.datetime[0]) 无日期

只有一列

print(self.movav.getlinealiases())
('sma',)

未完待续!!!

这篇关于Backtrader 文档学习-Platform Concepts的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/491136

相关文章

C#实现一键批量合并PDF文档

《C#实现一键批量合并PDF文档》这篇文章主要为大家详细介绍了如何使用C#实现一键批量合并PDF文档功能,文中的示例代码简洁易懂,感兴趣的小伙伴可以跟随小编一起学习一下... 目录前言效果展示功能实现1、添加文件2、文件分组(书签)3、定义页码范围4、自定义显示5、定义页面尺寸6、PDF批量合并7、其他方法

Java实现在Word文档中添加文本水印和图片水印的操作指南

《Java实现在Word文档中添加文本水印和图片水印的操作指南》在当今数字时代,文档的自动化处理与安全防护变得尤为重要,无论是为了保护版权、推广品牌,还是为了在文档中加入特定的标识,为Word文档添加... 目录引言Spire.Doc for Java:高效Word文档处理的利器代码实战:使用Java为Wo

使用Python实现Word文档的自动化对比方案

《使用Python实现Word文档的自动化对比方案》我们经常需要比较两个Word文档的版本差异,无论是合同修订、论文修改还是代码文档更新,人工比对不仅效率低下,还容易遗漏关键改动,下面通过一个实际案例... 目录引言一、使用python-docx库解析文档结构二、使用difflib进行差异比对三、高级对比方

Python自动化处理PDF文档的操作完整指南

《Python自动化处理PDF文档的操作完整指南》在办公自动化中,PDF文档处理是一项常见需求,本文将介绍如何使用Python实现PDF文档的自动化处理,感兴趣的小伙伴可以跟随小编一起学习一下... 目录使用pymupdf读写PDF文件基本概念安装pymupdf提取文本内容提取图像添加水印使用pdfplum

Python从Word文档中提取图片并生成PPT的操作代码

《Python从Word文档中提取图片并生成PPT的操作代码》在日常办公场景中,我们经常需要从Word文档中提取图片,并将这些图片整理到PowerPoint幻灯片中,手动完成这一任务既耗时又容易出错,... 目录引言背景与需求解决方案概述代码解析代码核心逻辑说明总结引言在日常办公场景中,我们经常需要从 W

Unity新手入门学习殿堂级知识详细讲解(图文)

《Unity新手入门学习殿堂级知识详细讲解(图文)》Unity是一款跨平台游戏引擎,支持2D/3D及VR/AR开发,核心功能模块包括图形、音频、物理等,通过可视化编辑器与脚本扩展实现开发,项目结构含A... 目录入门概述什么是 UnityUnity引擎基础认知编辑器核心操作Unity 编辑器项目模式分类工程

C#高效实现Word文档内容查找与替换的6种方法

《C#高效实现Word文档内容查找与替换的6种方法》在日常文档处理工作中,尤其是面对大型Word文档时,手动查找、替换文本往往既耗时又容易出错,本文整理了C#查找与替换Word内容的6种方法,大家可以... 目录环境准备方法一:查找文本并替换为新文本方法二:使用正则表达式查找并替换文本方法三:将文本替换为图

Python批量替换多个Word文档的多个关键字的方法

《Python批量替换多个Word文档的多个关键字的方法》有时,我们手头上有多个Excel或者Word文件,但是领导突然要求对某几个术语进行批量的修改,你是不是有要崩溃的感觉,所以本文给大家介绍了Py... 目录工具准备先梳理一下思路神奇代码来啦!代码详解激动人心的测试结语嘿,各位小伙伴们,大家好!有没有想

Python学习笔记之getattr和hasattr用法示例详解

《Python学习笔记之getattr和hasattr用法示例详解》在Python中,hasattr()、getattr()和setattr()是一组内置函数,用于对对象的属性进行操作和查询,这篇文章... 目录1.getattr用法详解1.1 基本作用1.2 示例1.3 原理2.hasattr用法详解2.

Python调用LibreOffice处理自动化文档的完整指南

《Python调用LibreOffice处理自动化文档的完整指南》在数字化转型的浪潮中,文档处理自动化已成为提升效率的关键,LibreOffice作为开源办公软件的佼佼者,其命令行功能结合Python... 目录引言一、环境搭建:三步构建自动化基石1. 安装LibreOffice与python2. 验证安装