Linux - 内存 - memblock 分配器

2023-12-13 21:28

本文主要是介绍Linux - 内存 - memblock 分配器,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

说明

  • memblock是Linux内核启动早期用于管理物理内存的机制,在伙伴系统(Buddy System)接管内存管理之前为系统提供物理内存分配、释放等功能。
  • 相对于伙伴系统,memblock功能和实现较为简单。
  • 本文基于:linux_5.10 arm64平台。

历史

  • 启动早期的内存管理器实现有bootmem和memblock,bootmem是早期内核采用,4.x以后内核内核采用memblock,配置了NO_BOOTMEM宏。
  • memblock取代了bootmem算法。

实现原理

获取物理内存布局

  • 不同于伙伴系统以内存页为操作对象,memblock以物理内存段为操作对象,系统从dtb或者uboot传递来的mem信息中解析出总的物理内存信息(核心信息是地址范围),此时的物理内存是一段段的地址空间,再初始化memblock。

fdt方式

  • dts配置中有memory的配置
* 单段物理内存
memory {device_type = "memory";reg = <0x0 0x80000000 0x0 0x10000000>;
};
* 多段物理内存
memory@0 {device_type = "memory";reg = <0x00000000 0x00000000 0x00000000 0x05e00000>,<0x00000000 0x05f00000 0x00000000 0x00001000>,<0x00000000 0x05f02000 0x00000000 0x00efd000>,<0x00000000 0x06e00000 0x00000000 0x0060f000>,<0x00000000 0x07410000 0x00000000 0x1aaf0000>,<0x00000000 0x22000000 0x00000000 0x1c000000>;
};

uboot bootargs方式

  • uboot启动linux时,可以通过linux的启动参数bootargs,传递物理内存信息(基址和size),初始化memblock。
  • 格式如下:
mem=size@start
  • 配置流程
* 函数调用栈
early_mem  //file: arch/arm64/mm/init.c,解析出物理内存信息,保存在全局变量中
arm64_memblock_init //file: arch/arm64/mm/init.c 
->  memblock_add
* 核心代码
void __init arm64_memblock_init(void)
{...if (memory_limit != PHYS_ADDR_MAX) { //全局变量非默认值memblock_mem_limit_remove_map(memory_limit); memblock_add(__pa_symbol(_text), (u64)(_end - _text));}...
}

可用段查找原理

  • memblock内存分配时可用段查找采用first match算法,即占用首先找到的可以段。
  • 内存分配查找的方向可以是从高到低,也可以是从低到高,通过总context中的成员变量bottom_up决定。

两个阶段

  • memblock有两个阶段
  1. memblock init之前;主要是静态分配,根据dts配置中预留内存定义(reserved memory),内核本身(code等),dtb等,在物理内存上分配出所需的预留内存。
  2. memblock init之后,伙伴系统初始化完之前;主要是Linux内核机制产生的动态内存分配。
  • 两个阶段以以memblock configuration为分隔。

分配结果

  • memblock分配结果都是预留内存,分配结束后固定占用,无法释放和复用。

代码逻辑

  • memblock源码在Linux内核根目录下的:
include/linux/memblock.h 
mm/memblock.c 

数据结构和实例

  • memblock从大到小定义了三个数据结构,如下:
  1. 总context定义
struct memblock {bool bottom_up;  //内存分配的方向:从高到低(FALSE)、从低到高(TRUE)phys_addr_t current_limit; //最大内存地址struct memblock_type memory; //可管理的内存段struct memblock_type reserved; //预留内存
};
  1. 内存类型定义
struct memblock_type {unsigned long cnt; //内存区域个数(占用数组个数)unsigned long max; //最大区域个数(数组总个数)phys_addr_t total_size; //该内存类型总大小struct memblock_region *regions; //包含的内存区域数组char *name;
};
  1. 内存区域(地址段)定义
struct memblock_region {phys_addr_t base;  //基址phys_addr_t size;  //空间大小enum memblock_flags flags; //flag
#ifdef CONFIG_NUMAint nid;   //物理内存 node id,NUMA可以存在多个物理内存节点(node)
#endif
};enum memblock_flags {MEMBLOCK_NONE           = 0x0,  /* No special request */ //正常MEMBLOCK_HOTPLUG        = 0x1,  /* hotpluggable region */ //可插拔区域MEMBLOCK_MIRROR         = 0x2,  /* mirrored region */MEMBLOCK_NOMAP          = 0x4,  /* don't add to kernel direct mapping */ //no map区域
};
  • 总context实例,以全局静态变量(保存在BSS段中)形式定义,区域都是预先定义的全局静态数组,数组个数默认128(INIT_MEMBLOCK_REGIONS)。
static struct memblock_region memblock_memory_init_regions[INIT_MEMBLOCK_REGIONS] __initdata_memblock;
static struct memblock_region memblock_reserved_init_regions[INIT_MEMBLOCK_RESERVED_REGIONS] __initdata_memblock;
#ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP
static struct memblock_region memblock_physmem_init_regions[INIT_PHYSMEM_REGIONS];
#endifstruct memblock memblock __initdata_memblock = {.memory.regions         = memblock_memory_init_regions,.memory.cnt             = 1,    /* empty dummy entry */.memory.max             = INIT_MEMBLOCK_REGIONS,.memory.name            = "memory",.reserved.regions       = memblock_reserved_init_regions,.reserved.cnt           = 1,    /* empty dummy entry */.reserved.max           = INIT_MEMBLOCK_RESERVED_REGIONS,.reserved.name          = "reserved",.bottom_up              = false,.current_limit          = MEMBLOCK_ALLOC_ANYWHERE,
};

API

  1. memblock_add
  • 将内存区域加入memblock可管理的内存区域,即memory的region队列。
  1. memblock_free
  • 将一个物理内存段从预留内存中移除,该内存段重新标记为可用。
int memblock_free(phys_addr_t base, phys_addr_t size)
{memblock_dbg("   memblock_free: [%#016llx-%#016llx] %pF\n",(unsigned long long)base,(unsigned long long)base + size - 1,(void *)_RET_IP_);kmemleak_free_part_phys(base, size);return memblock_remove_range(&memblock.reserved, base, size);
}

调试

  1. 获取memblock的详细分配log,可以通过在uboot bootargs中加入“memblock=debug”,内核启动后,通过dmesg或者/proc/kmsg查看调试信息。
  2. linux kernel启动后可以通过debug fs查看内存地址范围和reserved区域,如下:
/sys/kernel/debug/memblock/memory #交由系统管理的内存 
/sys/kernel/debug/memblock/reserved #预留的内存
* 需要开启配置
CONFIG_DEBUG_FS
CONFIG_ARCH_KEEP_MEMBLOCK //是否保留memblock分配信息
  • 该功能不是很有必要并且会占用一定物理资源,方法1足以满足调试需求,新内核CONFIG_ARCH_KEEP_MEMBLOCK配置默认是关的。

交接

  • buddy分配器初始化ok后,memblock分配器将内存管理工作交接给buddy(伙伴)分配器。

标志

  • memblock和伙伴系统的交接标志:释放init进程内存(free_initmem函数处理),之后系统可用内存(/proc/meminfo中的MemTotal)就固定了。

分配实例分析

  • 分配实例

这篇关于Linux - 内存 - memblock 分配器的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/490013

相关文章

VScode连接远程Linux服务器环境配置图文教程

《VScode连接远程Linux服务器环境配置图文教程》:本文主要介绍如何安装和配置VSCode,包括安装步骤、环境配置(如汉化包、远程SSH连接)、语言包安装(如C/C++插件)等,文中给出了详... 目录一、安装vscode二、环境配置1.中文汉化包2.安装remote-ssh,用于远程连接2.1安装2

Java循环创建对象内存溢出的解决方法

《Java循环创建对象内存溢出的解决方法》在Java中,如果在循环中不当地创建大量对象而不及时释放内存,很容易导致内存溢出(OutOfMemoryError),所以本文给大家介绍了Java循环创建对象... 目录问题1. 解决方案2. 示例代码2.1 原始版本(可能导致内存溢出)2.2 修改后的版本问题在

大数据小内存排序问题如何巧妙解决

《大数据小内存排序问题如何巧妙解决》文章介绍了大数据小内存排序的三种方法:数据库排序、分治法和位图法,数据库排序简单但速度慢,对设备要求高;分治法高效但实现复杂;位图法可读性差,但存储空间受限... 目录三种方法:方法概要数据库排序(http://www.chinasem.cn对数据库设备要求较高)分治法(常

Redis多种内存淘汰策略及配置技巧分享

《Redis多种内存淘汰策略及配置技巧分享》本文介绍了Redis内存满时的淘汰机制,包括内存淘汰机制的概念,Redis提供的8种淘汰策略(如noeviction、volatile-lru等)及其适用场... 目录前言一、什么是 Redis 的内存淘汰机制?二、Redis 内存淘汰策略1. pythonnoe

Linux中shell解析脚本的通配符、元字符、转义符说明

《Linux中shell解析脚本的通配符、元字符、转义符说明》:本文主要介绍shell通配符、元字符、转义符以及shell解析脚本的过程,通配符用于路径扩展,元字符用于多命令分割,转义符用于将特殊... 目录一、linux shell通配符(wildcard)二、shell元字符(特殊字符 Meta)三、s

Linux之软件包管理器yum详解

《Linux之软件包管理器yum详解》文章介绍了现代类Unix操作系统中软件包管理和包存储库的工作原理,以及如何使用包管理器如yum来安装、更新和卸载软件,文章还介绍了如何配置yum源,更新系统软件包... 目录软件包yumyum语法yum常用命令yum源配置文件介绍更新yum源查看已经安装软件的方法总结软

linux报错INFO:task xxxxxx:634 blocked for more than 120 seconds.三种解决方式

《linux报错INFO:taskxxxxxx:634blockedformorethan120seconds.三种解决方式》文章描述了一个Linux最小系统运行时出现的“hung_ta... 目录1.问题描述2.解决办法2.1 缩小文件系统缓存大小2.2 修改系统IO调度策略2.3 取消120秒时间限制3

Linux alias的三种使用场景方式

《Linuxalias的三种使用场景方式》文章介绍了Linux中`alias`命令的三种使用场景:临时别名、用户级别别名和系统级别别名,临时别名仅在当前终端有效,用户级别别名在当前用户下所有终端有效... 目录linux alias三种使用场景一次性适用于当前用户全局生效,所有用户都可调用删除总结Linux

Linux:alias如何设置永久生效

《Linux:alias如何设置永久生效》在Linux中设置别名永久生效的步骤包括:在/root/.bashrc文件中配置别名,保存并退出,然后使用source命令(或点命令)使配置立即生效,这样,别... 目录linux:alias设置永久生效步骤保存退出后功能总结Linux:alias设置永久生效步骤

Linux使用fdisk进行磁盘的相关操作

《Linux使用fdisk进行磁盘的相关操作》fdisk命令是Linux中用于管理磁盘分区的强大文本实用程序,这篇文章主要为大家详细介绍了如何使用fdisk进行磁盘的相关操作,需要的可以了解下... 目录简介基本语法示例用法列出所有分区查看指定磁盘的区分管理指定的磁盘进入交互式模式创建一个新的分区删除一个存