linux ksm实现与代码简述

2023-12-13 15:04
文章标签 代码 实现 linux 简述 ksm

本文主要是介绍linux ksm实现与代码简述,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

KSM 全称是 Kernel Samepage Merging,表示相同的物理页只映射一份拷贝。

原理

在ksm初始化时(ksm_init),注册了一个ksm_scan_thread线程,这个线程的核心入口是ksm_do_scan。当对一个进程第一次通过madvice(MADV_MERGEABLE)标记一段内存可合并时,会触发__ksm_enter将当前进程标记为MMF_VM_MERGEABLE,并把进程的mm_struct放在ksm_mm_head链表上。ksm_scan_thread会在ksm_mm_head链表上做扫描,找到标记合并的匿名页中,page内容的checksum不变的页(说明最近没有写入),如果是将找到的mergable 页合并到stable_tree 的 node上,将相应pte置为同一个物理地址。当有写操作时,会因为write_protected标记触发cow机制,生成新的页,并从stable tree里移除。

实现

ksm_scan_thread线程的核心是 ksm_do_scan,它会扫描所有进程(ksm_mm_head链表上的所有进程)的可合并 vma,找到checksum不变的页,如果stable tree没有,就添加到page所在numa 节点的unstable tree上,如果原本unstable tree上有,就一起移至stable tree(即引用超过2页的mergable 页才会移至stable tree中)。一轮扫描结束后,unstable tree会被清空,并在下轮扫描中重建。

每个numa 节点都有一个 stable tree和unstable tree。如果开启了ksm_merge_across_nodes,则所有numa node共用0号节点。

stable tree 是一个红黑树,当共享页的vma很多,超过ksm_max_page_sharing(256)个时,会将stable tree 的node 转为chain list node,每个chain list node 上最多存256个vma节点。它们指向同一个物理页。

unstable tree也是一个红黑树,一轮扫描结束后,unstable tree会被清空,并在下轮扫描中重建。

代码简述

ksm_do_scan主要由scan_get_next_rmap_item找可合并匿名页,由cmp_and_merge_page到对应numa节点找页尝试合并

scan_get_next_rmap_item

找mergable 的mapping了物理页的page。最终会连成一个链存在mm_struct->rmap_list上。

会顺带将不再mapping或设置unmergable的rmap_item删掉。

scan_get_next_rmap_item():// 新一轮扫描if (mm_slot == &ksm_mm_head) {/*** 新一轮扫描前首先触发一次lru_add_drain_all* 因为lru如果一直不刷新的话,有些无用的页会因为引用计数而不能做merge。*/lru_add_drain_all();/*** 如果一页做了迁移,在一轮结束时应该已经有对应节点加在了正确numa节点的stable tree上* 并增加了ref,可以安全地将ref减1了*/if (ksm_merge_across_nodes) {list_for_each_entry_safe(stable_node, next, &migrate_nodes, list) {page = get_ksm_page(stable_node, GET_KSM_PAGE_NOLOCK);if (page)put_page(page);cond_resched();}}}vma_iter_init(&vmi, mm, ksm_scan.address);for_each_vma(vmi, vma) {/*** 遍历一个进程所有mergeable anon vma中的有物理页的page,跳过device页,* 找到对应 address 的 rmap_item,或为它新创建一个rmap_item,* 上一次扫描到的ksm_scan.rmap_list 到它之间的所有item都* 不再mergable或没有物理页了,需要删除 rmap_item。* (这样一轮下来,整个进程的全部mergable的物理页的rmap,*   就全放在mm_struct->rmap_list上了)*/rmap_item = get_next_rmap_item(mm_slot, ksm_scan.rmap_list, ksm_scan.address);return rmap_item; // 找到了一个mergable匿名页}// 如果扫描一轮发现这个进程没有ksm页了,就删掉对应mm_slothash_del(&mm_slot->slot.hash);list_del(&mm_slot->slot.mm_node);

cmp_and_merge_page

如果目标页的ksm页大于等于2个,则能找目标页所在numa节点上的stable node,加入上去。

在还没找到时,会先把自己加在unstable tree对应numa节点上,等后面的ksm页发现自己,并与自己一同加到stable tree上。

如果一个numa节点的stable tree上的一个ksm页,有多个dup节点,它们会连成一个chain,在stable_tree_search->chain_prune时会优先找到映射最多page结构的dup节点,与它合并。

搜索可合并stable node过程中会顺带发现不属于当前numa 节点的ksm页,从树上删除,并在之后整一轮扫描结束时,将ref减1。

cmp_and_merge_page():stable_node = page_stable_node(page);if (stable_node) {如果不支持ksm迁移,且物理页做了 numa node 迁移。则把 stable node 迁移至migrate_nodes上。否则它已经在 stable 树上了,直接返回}// 找出一个 ksm 页kpage = stable_tree_search();// 如果有这样的 ksm 页,则将此页的pte映射到ksm页上去。并插入 stable tree。if (kpage) {try_to_merge_with_ksm_page();stable_tree_append(rmap_item, page_stable_node(kpage));}// 还没有这样的 ksm 页,计算 checksum ,看是不是与上次一样,一样则认为没有修改calc_checksum(page);// 如果checksum变了, 它可能被频繁修改,不对这样的页做合并if (rmap_item->oldchecksum != checksum) {rmap_item->oldchecksum = checksum;return;}// 如果checksum是0页,则与0页合并(0页是刚初始化的页)try_to_merge_one_page(vma, page, ZERO_PAGE(rmap_item->address));// 尝试从本轮的对应 numa 节点的 unstable tree 上找有没有出现过相同内容页,// 没有则插入 unstable treeunstable_tree_search_insert()// 如果unstable tree有,说明有两个同样内容的页内容一直没变,可以合并到 stable treetry_to_merge_two_pages()stable_tree_append(tree_rmap_item, stable_node);stable_tree_append(rmap_item, stable_node);// 如果两个相同内容页出现在同一个 compound page 上// 则只是拆分复合页,先不合并ksm,因为需要重新拿锁,可以等到下一轮split_huge_page(); 

stable_tree_search

搜索过程中,如果自己的page已经是migrate stable node了,就可以找个树上的节点替换,并返回自己。

在stable tree搜索过程中,会顺便发现物理页已经迁移了的node,并将其从树上移除。

stable_tree_search():// 如果页对应的stable node存在,则前面的cmp_and_merge_page// 保证了它在migrate_nodes上page_node = page_stable_node(page);// 在对应numa节点的红黑树查找nid = get_kpfn_nid(page_to_pfn(page));root = root_stable_tree + nid;new = &root->rb_node;while (*new) /* 一层层找到叶子节点 */{// 红黑树的节点可能是一个dup节点,如果vma超过了256,节点会组成dup链chain// 如果超过一定时间,则红黑树上chain节点的dup链,看是否只有一个dup节了。// 如果是,则用dup节点代替红黑树上的chain节点。// 这同时,会尝试把最多vma的dup节点放在chain的头上,作为下次合并首选dupchain_prune();// 比较页的内容,从而在红黑树上向下找ret = memcmp_pages(page, tree_page);// 如果目标页有stable node节点,且是一个物理页迁移了的 stable 节点if (page_node) {// 修改它的nid为它迁移到的numa节点id,并加回 stable tree //(mapcount > 1 时,以dup形式加到node chain上,等于1时走if后的逻辑加到dup上)DO_NUMA(page_node->nid = nid);stable_node_chain_add_dup(page_node, stable_node)}// chain_prune已经取了最多map页的dup节点// 这里判断下如果numa id不变,说明没有迁移过,可直接返回tree_page = get_ksm_page(stable_node_dup);if (get_kpfn_nid(stable_node_dup->kpfn) == NUMA(stable_node_dup->nid)) {return tree_page;}/*** 如果numa id 变过,则刚好发现了一个 numa 节点迁移了的 node* 可顺便将其从树上删除。并尝试将原page的stable migrate node 加回树上* (调用它的 cmp_and_merge_page 保证了如果page有stable node对应,则一定是migrate node)*/if (dup节点在红黑树上的chain上) {// 可直接将原节点删掉__stable_node_dup_del(stable_node_dup);if (page没有对应stable node migrate 节点))return null;// 如果page有节点,就把page改numa id后加到chain上去DO_NUMA(page_node->nid = nid);stable_node_chain_add_dup(page_node, stable_node);return page;} else /* dup 节点直接在红黑树上 */{if (page有对应stable node migrate 节点) {// 直接交换,并返回原页(因为它已经在树上了)rb_replace_node(&stable_node_dup->node, &page_node->node, root);return page;} else /* page 没有 stable node节点对应 */ {// 移除原节点,返回null(因为它没在树上了)rb_erase(&stable_node_dup->node, root);return null;}}}

页回收

当页被回收时,物理页的flag上swapcache标记会清理,导致get_ksm_page中观察到这个现象,并触发stable node 的删除,下次触发缺页时每个进程的页需要重新建立页的pte,再由ksmd线程重新扫描发现可合并的页。

这篇关于linux ksm实现与代码简述的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/488897

相关文章

C++使用栈实现括号匹配的代码详解

《C++使用栈实现括号匹配的代码详解》在编程中,括号匹配是一个常见问题,尤其是在处理数学表达式、编译器解析等任务时,栈是一种非常适合处理此类问题的数据结构,能够精确地管理括号的匹配问题,本文将通过C+... 目录引言问题描述代码讲解代码解析栈的状态表示测试总结引言在编程中,括号匹配是一个常见问题,尤其是在

Java实现检查多个时间段是否有重合

《Java实现检查多个时间段是否有重合》这篇文章主要为大家详细介绍了如何使用Java实现检查多个时间段是否有重合,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录流程概述步骤详解China编程步骤1:定义时间段类步骤2:添加时间段步骤3:检查时间段是否有重合步骤4:输出结果示例代码结语作

使用C++实现链表元素的反转

《使用C++实现链表元素的反转》反转链表是链表操作中一个经典的问题,也是面试中常见的考题,本文将从思路到实现一步步地讲解如何实现链表的反转,帮助初学者理解这一操作,我们将使用C++代码演示具体实现,同... 目录问题定义思路分析代码实现带头节点的链表代码讲解其他实现方式时间和空间复杂度分析总结问题定义给定

Linux使用nload监控网络流量的方法

《Linux使用nload监控网络流量的方法》Linux中的nload命令是一个用于实时监控网络流量的工具,它提供了传入和传出流量的可视化表示,帮助用户一目了然地了解网络活动,本文给大家介绍了Linu... 目录简介安装示例用法基础用法指定网络接口限制显示特定流量类型指定刷新率设置流量速率的显示单位监控多个

Java覆盖第三方jar包中的某一个类的实现方法

《Java覆盖第三方jar包中的某一个类的实现方法》在我们日常的开发中,经常需要使用第三方的jar包,有时候我们会发现第三方的jar包中的某一个类有问题,或者我们需要定制化修改其中的逻辑,那么应该如何... 目录一、需求描述二、示例描述三、操作步骤四、验证结果五、实现原理一、需求描述需求描述如下:需要在

ElasticSearch+Kibana通过Docker部署到Linux服务器中操作方法

《ElasticSearch+Kibana通过Docker部署到Linux服务器中操作方法》本文介绍了Elasticsearch的基本概念,包括文档和字段、索引和映射,还详细描述了如何通过Docker... 目录1、ElasticSearch概念2、ElasticSearch、Kibana和IK分词器部署

如何使用Java实现请求deepseek

《如何使用Java实现请求deepseek》这篇文章主要为大家详细介绍了如何使用Java实现请求deepseek功能,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录1.deepseek的api创建2.Java实现请求deepseek2.1 pom文件2.2 json转化文件2.2

Java调用DeepSeek API的最佳实践及详细代码示例

《Java调用DeepSeekAPI的最佳实践及详细代码示例》:本文主要介绍如何使用Java调用DeepSeekAPI,包括获取API密钥、添加HTTP客户端依赖、创建HTTP请求、处理响应、... 目录1. 获取API密钥2. 添加HTTP客户端依赖3. 创建HTTP请求4. 处理响应5. 错误处理6.

python使用fastapi实现多语言国际化的操作指南

《python使用fastapi实现多语言国际化的操作指南》本文介绍了使用Python和FastAPI实现多语言国际化的操作指南,包括多语言架构技术栈、翻译管理、前端本地化、语言切换机制以及常见陷阱和... 目录多语言国际化实现指南项目多语言架构技术栈目录结构翻译工作流1. 翻译数据存储2. 翻译生成脚本

Linux流媒体服务器部署流程

《Linux流媒体服务器部署流程》文章详细介绍了流媒体服务器的部署步骤,包括更新系统、安装依赖组件、编译安装Nginx和RTMP模块、配置Nginx和FFmpeg,以及测试流媒体服务器的搭建... 目录流媒体服务器部署部署安装1.更新系统2.安装依赖组件3.解压4.编译安装(添加RTMP和openssl模块