常用的两种ORC 验证码 识别方法及实践感言

2023-12-13 14:32

本文主要是介绍常用的两种ORC 验证码 识别方法及实践感言,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

参考:

用Asprise的OCR包,处理验证码。

java ORC 图片中文识别

浅谈OCR之Tesseract

(原)测试 Tesseract-OCR 在windows平台过程记录

Java OCR 图像智能字符识别技术,可识别中文

 

来由,这几天想做坏事,从一个网站上批量查询东西,但是无奈每次查询都有验证码,所以就搜索到了以上几篇文章

基本介绍:

1、Asprise,是个收费的OCR软件,但是网络的力量是无穷的,可以下载到破解的

关于 Asprise的使用例子可以参考代码:

 Asprise-OCR-Java示例代码

 

2、Tesseract,该技术是google的一个源码项目,出自HP(http://code.google.com/p/tesseract-ocr)

a、首先安装tesseract-ocr-setup-3.01-1.exe

b、安装好了以后你需要哪种语言或者类别的识别支持,到官网的downlist中去查找插件,并放置在安装目录的/tessdata文件夹下(如果需要中文支持,下载tesseract-ocr的中文包

chi_sim.traineddata.gz,解压缩之后复制到tesseract-ocr的安装目录/tessdata文件夹之下)见图

c、安装好以后,c++,java等等都可以进行tesseract的转换操作,我们就以命令行下为例

C:\Program Files\Tesseract-OCR>tesseract -help

Usage:tesseract imagename outputbase [-l lang] [-psm pagesegmode] [configfile...]

pagesegmode values are:

0 = Orientation and script detection (OSD) only.

1 = Automatic page segmentation with OSD.

2 = Automatic page segmentation, but no OSD, or OCR

3 = Fully automatic page segmentation, but no OSD. (Default)

4 = Assume a single column of text of variable sizes.

5 = Assume a single uniform block of vertically aligned text.

6 = Assume a single uniform block of text.

7 = Treat the image as a single text line.

8 = Treat the image as a single word.

9 = Treat the image as a single word in a circle.

10 = Treat the image as a single character.

-l lang and/or -psm pagesegmode must occur before anyconfigfile.

 

实例 tesseract xx.jpg output -l eng -psm 8

详解 tesseract即为安装目录下的tesseract.exe执行文件

     xx.jpg即为你需要ORC解析的图片文件

     output即为你需要将结果保存的文件名

     -l eng 即为以英文字母模式进行解析

     -psm 8即为以单行字母解析

 

关于Tesseract的JAVA中的使用说明可以参考代码:

tesseract安装包及JAVA代码实例 

 

综合使用以后,发现这2者效果一般,识别率很低,

原因很简单,大多数网站的验证码都加入不同程度的噪音,以防止OCR软件的自动分析。

 

 在Java OCR 图像智能字符识别技术,可识别中文  一文中谈到了进行一些图像去噪处理的简单方法,但是效果也一般,不过这的确提供了一些思路,只要有好的噪点处理方法肯定会提高OCR识别率。

package com.ocr;
import java.awt.Graphics2D;
import java.awt.color.ColorSpace;
import java.awt.geom.AffineTransform;
import java.awt.image.AffineTransformOp;
import java.awt.image.BufferedImage;
import java.awt.image.ColorConvertOp;
import java.awt.image.ColorModel;
import java.awt.image.MemoryImageSource;
import java.awt.image.PixelGrabber;
/**
*
* 图像过滤,增强OCR识别成功率
*
*/
public class ImageFilter {
private BufferedImage image;
private int iw, ih;
private int[] pixels;
public ImageFilter(BufferedImage image) {
this.image = image;
iw = image.getWidth();
ih = image.getHeight();
pixels = new int[iw * ih];
}
/** 图像二值化 */
public BufferedImage changeGrey() {
PixelGrabber pg = new PixelGrabber(image.getSource(), 0, 0, iw, ih, pixels, 0, iw);
try {
pg.grabPixels();
} catch (InterruptedException e) {
e.printStackTrace();
}
// 设定二值化的域值,默认值为100
int grey = 100;
// 对图像进行二值化处理,Alpha值保持不变
ColorModel cm = ColorModel.getRGBdefault();
for (int i = 0; i < iw * ih; i++) {
int red, green, blue;
int alpha = cm.getAlpha(pixels[i]);
if (cm.getRed(pixels[i]) > grey) {
red = 255;
} else {
red = 0;
}
if (cm.getGreen(pixels[i]) > grey) {
green = 255;
} else {
green = 0;
}
if (cm.getBlue(pixels[i]) > grey) {
blue = 255;
} else {
blue = 0;
}
pixels[i] = alpha << 24 | red << 16 | green << 8 | blue;
}
// 将数组中的象素产生一个图像
return ImageIOHelper.imageProducerToBufferedImage(new MemoryImageSource(iw, ih, pixels, 0, iw));
}
/** 提升清晰度,进行锐化 */
public BufferedImage sharp() {
PixelGrabber pg = new PixelGrabber(image.getSource(), 0, 0, iw, ih, pixels, 0, iw);
try {
pg.grabPixels();
} catch (InterruptedException e) {
e.printStackTrace();
}
// 象素的中间变量
int tempPixels[] = new int[iw * ih];
for (int i = 0; i < iw * ih; i++) {
tempPixels[i] = pixels[i];
}
// 对图像进行尖锐化处理,Alpha值保持不变
ColorModel cm = ColorModel.getRGBdefault();
for (int i = 1; i < ih - 1; i++) {
for (int j = 1; j < iw - 1; j++) {
int alpha = cm.getAlpha(pixels[i * iw + j]);
// 对图像进行尖锐化
int red6 = cm.getRed(pixels[i * iw + j + 1]);
int red5 = cm.getRed(pixels[i * iw + j]);
int red8 = cm.getRed(pixels[(i + 1) * iw + j]);
int sharpRed = Math.abs(red6 - red5) + Math.abs(red8 - red5);
int green5 = cm.getGreen(pixels[i * iw + j]);
int green6 = cm.getGreen(pixels[i * iw + j + 1]);
int green8 = cm.getGreen(pixels[(i + 1) * iw + j]);
int sharpGreen = Math.abs(green6 - green5) + Math.abs(green8 - green5);
int blue5 = cm.getBlue(pixels[i * iw + j]);
int blue6 = cm.getBlue(pixels[i * iw + j + 1]);
int blue8 = cm.getBlue(pixels[(i + 1) * iw + j]);
int sharpBlue = Math.abs(blue6 - blue5) + Math.abs(blue8 - blue5);
if (sharpRed > 255) {
sharpRed = 255;
}
if (sharpGreen > 255) {
sharpGreen = 255;
}
if (sharpBlue > 255) {
sharpBlue = 255;
}
tempPixels[i * iw + j] = alpha << 24 | sharpRed << 16 | sharpGreen << 8 | sharpBlue;
}
}
// 将数组中的象素产生一个图像
return ImageIOHelper.imageProducerToBufferedImage(new MemoryImageSource(iw, ih, tempPixels, 0, iw));
}
/** 中值滤波 */
public BufferedImage median() {
PixelGrabber pg = new PixelGrabber(image.getSource(), 0, 0, iw, ih, pixels, 0, iw);
try {
pg.grabPixels();
} catch (InterruptedException e) {
e.printStackTrace();
}
// 对图像进行中值滤波,Alpha值保持不变
ColorModel cm = ColorModel.getRGBdefault();
for (int i = 1; i < ih - 1; i++) {
for (int j = 1; j < iw - 1; j++) {
int red, green, blue;
int alpha = cm.getAlpha(pixels[i * iw + j]);
// int red2 = cm.getRed(pixels[(i - 1) * iw + j]);
int red4 = cm.getRed(pixels[i * iw + j - 1]);
int red5 = cm.getRed(pixels[i * iw + j]);
int red6 = cm.getRed(pixels[i * iw + j + 1]);
// int red8 = cm.getRed(pixels[(i + 1) * iw + j]);
// 水平方向进行中值滤波
if (red4 >= red5) {
if (red5 >= red6) {
red = red5;
} else {
if (red4 >= red6) {
red = red6;
} else {
red = red4;
}
}
} else {
if (red4 > red6) {
red = red4;
} else {
if (red5 > red6) {
red = red6;
} else {
red = red5;
}
}
}
// int green2 = cm.getGreen(pixels[(i - 1) * iw + j]);
int green4 = cm.getGreen(pixels[i * iw + j - 1]);
int green5 = cm.getGreen(pixels[i * iw + j]);
int green6 = cm.getGreen(pixels[i * iw + j + 1]);
// int green8 = cm.getGreen(pixels[(i + 1) * iw + j]);
// 水平方向进行中值滤波
if (green4 >= green5) {
if (green5 >= green6) {
green = green5;
} else {
if (green4 >= green6) {
green = green6;
} else {
green = green4;
}
}
} else {
if (green4 > green6) {
green = green4;
} else {
if (green5 > green6) {
green = green6;
} else {
green = green5;
}
}
}
// int blue2 = cm.getBlue(pixels[(i - 1) * iw + j]);
int blue4 = cm.getBlue(pixels[i * iw + j - 1]);
int blue5 = cm.getBlue(pixels[i * iw + j]);
int blue6 = cm.getBlue(pixels[i * iw + j + 1]);
// int blue8 = cm.getBlue(pixels[(i + 1) * iw + j]);
// 水平方向进行中值滤波
if (blue4 >= blue5) {
if (blue5 >= blue6) {
blue = blue5;
} else {
if (blue4 >= blue6) {
blue = blue6;
} else {
blue = blue4;
}
}
} else {
if (blue4 > blue6) {
blue = blue4;
} else {
if (blue5 > blue6) {
blue = blue6;
} else {
blue = blue5;
}
}
}
pixels[i * iw + j] = alpha << 24 | red << 16 | green << 8 | blue;
}
}
// 将数组中的象素产生一个图像
return ImageIOHelper.imageProducerToBufferedImage(new MemoryImageSource(iw, ih, pixels, 0, iw));
}
/** 线性灰度变换 */
public BufferedImage lineGrey() {
PixelGrabber pg = new PixelGrabber(image.getSource(), 0, 0, iw, ih, pixels, 0, iw);
try {
pg.grabPixels();
} catch (InterruptedException e) {
e.printStackTrace();
}
// 对图像进行进行线性拉伸,Alpha值保持不变
ColorModel cm = ColorModel.getRGBdefault();
for (int i = 0; i < iw * ih; i++) {
int alpha = cm.getAlpha(pixels[i]);
int red = cm.getRed(pixels[i]);
int green = cm.getGreen(pixels[i]);
int blue = cm.getBlue(pixels[i]);
// 增加了图像的亮度
red = (int) (1.1 * red + 30);
green = (int) (1.1 * green + 30);
blue = (int) (1.1 * blue + 30);
if (red >= 255) {
red = 255;
}
if (green >= 255) {
green = 255;
}
if (blue >= 255) {
blue = 255;
}
pixels[i] = alpha << 24 | red << 16 | green << 8 | blue;
}
// 将数组中的象素产生一个图像
return ImageIOHelper.imageProducerToBufferedImage(new MemoryImageSource(iw, ih, pixels, 0, iw));
}
/** 转换为黑白灰度图 */
public BufferedImage grayFilter() {
ColorSpace cs = ColorSpace.getInstance(ColorSpace.CS_GRAY);
ColorConvertOp op = new ColorConvertOp(cs, null);
return op.filter(image, null);
}
/** 平滑缩放 */
public BufferedImage scaling(double s) {
AffineTransform tx = new AffineTransform();
tx.scale(s, s);
AffineTransformOp op = new AffineTransformOp(tx, AffineTransformOp.TYPE_BILINEAR);
return op.filter(image, null);
}
public BufferedImage scale(Float s) {
int srcW = image.getWidth();
int srcH = image.getHeight();
int newW = Math.round(srcW * s);
int newH = Math.round(srcH * s);
// 先做水平方向上的伸缩变换
BufferedImage tmp=new BufferedImage(newW, newH, image.getType());
Graphics2D g= tmp.createGraphics();
for (int x = 0; x < newW; x++) {
g.setClip(x, 0, 1, srcH);
// 按比例放缩
g.drawImage(image, x - x * srcW / newW, 0, null);
}
// 再做垂直方向上的伸缩变换
BufferedImage dst = new BufferedImage(newW, newH, image.getType());
g = dst.createGraphics();
for (int y = 0; y < newH; y++) {
g.setClip(0, y, newW, 1);
// 按比例放缩
g.drawImage(tmp, 0, y - y * srcH / newH, null);
}
return dst;
}
}


 

 后记:

浅谈OCR之Onenote 2010

这个是另外一个OCR工具

 

 20121115补充:

tesseract-ocr 识别码库训练方法  提高验证码识别率

 

这篇关于常用的两种ORC 验证码 识别方法及实践感言的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/488801

相关文章

tomcat多实例部署的项目实践

《tomcat多实例部署的项目实践》Tomcat多实例是指在一台设备上运行多个Tomcat服务,这些Tomcat相互独立,本文主要介绍了tomcat多实例部署的项目实践,具有一定的参考价值,感兴趣的可... 目录1.创建项目目录,测试文China编程件2js.创建实例的安装目录3.准备实例的配置文件4.编辑实例的

Docker镜像pull失败两种解决办法小结

《Docker镜像pull失败两种解决办法小结》有时候我们在拉取Docker镜像的过程中会遇到一些问题,:本文主要介绍Docker镜像pull失败两种解决办法的相关资料,文中通过代码介绍的非常详细... 目录docker 镜像 pull 失败解决办法1DrQwWCocker 镜像 pull 失败解决方法2总

Python 中的异步与同步深度解析(实践记录)

《Python中的异步与同步深度解析(实践记录)》在Python编程世界里,异步和同步的概念是理解程序执行流程和性能优化的关键,这篇文章将带你深入了解它们的差异,以及阻塞和非阻塞的特性,同时通过实际... 目录python中的异步与同步:深度解析与实践异步与同步的定义异步同步阻塞与非阻塞的概念阻塞非阻塞同步

Python Dash框架在数据可视化仪表板中的应用与实践记录

《PythonDash框架在数据可视化仪表板中的应用与实践记录》Python的PlotlyDash库提供了一种简便且强大的方式来构建和展示互动式数据仪表板,本篇文章将深入探讨如何使用Dash设计一... 目录python Dash框架在数据可视化仪表板中的应用与实践1. 什么是Plotly Dash?1.1

在C#中调用Python代码的两种实现方式

《在C#中调用Python代码的两种实现方式》:本文主要介绍在C#中调用Python代码的两种实现方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录C#调用python代码的方式1. 使用 Python.NET2. 使用外部进程调用 Python 脚本总结C#调

Python实现自动化接收与处理手机验证码

《Python实现自动化接收与处理手机验证码》在移动互联网时代,短信验证码已成为身份验证、账号注册等环节的重要安全手段,本文将介绍如何利用Python实现验证码的自动接收,识别与转发,需要的可以参考下... 目录引言一、准备工作1.1 硬件与软件需求1.2 环境配置二、核心功能实现2.1 短信监听与获取2.

springboot集成Deepseek4j的项目实践

《springboot集成Deepseek4j的项目实践》本文主要介绍了springboot集成Deepseek4j的项目实践,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价... 目录Deepseek4j快速开始Maven 依js赖基础配置基础使用示例1. 流式返回示例2. 进阶

IDEA中Git版本回退的两种实现方案

《IDEA中Git版本回退的两种实现方案》作为开发者,代码版本回退是日常高频操作,IntelliJIDEA集成了强大的Git工具链,但面对reset和revert两种核心回退方案,许多开发者仍存在选择... 目录一、版本回退前置知识二、Reset方案:整体改写历史1、IDEA图形化操作(推荐)1.1、查看提

Linux上设置Ollama服务配置(常用环境变量)

《Linux上设置Ollama服务配置(常用环境变量)》本文主要介绍了Linux上设置Ollama服务配置(常用环境变量),Ollama提供了多种环境变量供配置,如调试模式、模型目录等,下面就来介绍一... 目录在 linux 上设置环境变量配置 OllamPOgxSRJfa手动安装安装特定版本查看日志在

Java常用注解扩展对比举例详解

《Java常用注解扩展对比举例详解》:本文主要介绍Java常用注解扩展对比的相关资料,提供了丰富的代码示例,并总结了最佳实践建议,帮助开发者更好地理解和应用这些注解,需要的朋友可以参考下... 目录一、@Controller 与 @RestController 对比二、使用 @Data 与 不使用 @Dat