S5PV210开发1.0.6------时钟系统

2023-12-12 10:08

本文主要是介绍S5PV210开发1.0.6------时钟系统,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

目录

1 .Soc时钟系统简介
2 .S5PV210的时钟系统简介 + 时钟域详解
3 .框图详解
4 .关键性寄存器
5. PLL设置方法
6.汇编代码演示
7.C代码演示

1. Soc时钟系统简介

1.什么是时钟?
同步工作系统的同步节拍
Soc内不同器件的时钟不一样

2.时钟的来源分类
外部直接输入时钟信号,SoC有个引脚用来输入外部时钟信号,用的很少。
外部晶振+内部时钟发生器产生时钟,大部分低频单片机都是这么工作的。
外部晶振+内部时钟发生器+内部PLL倍频+内部div分频器分频各种时钟

S5PV210时钟域

1.什么是时钟域
时钟按频率划分成3种:

MSYS: CPU(Cortex-A8内核)、DRAM控制器(DMC0和DMC1)、IRAM&IROM······
DSYS: 视频编解码有关
PSYS:内部外设:串口、SD接口、I2C、AC97、USB等

每个时钟域里包含的时钟类型:

ARMCLK:主频
HCLK_XXX:高频时钟
PCLK_XXX:低频时钟

各时钟典型值:
在这里插入图片描述
总结:AMBA总线与外设时钟连接,AMBA总线有AHB和APB两种,AHB里连接着HCLK_XXX(三种域的时钟)。
如:串口UART挂在PSYS域下的APB总线上,因此串口的时钟来源是PCLK_PSYS。

2.时钟来源
外部晶振+内部时钟发生器+内部PLL倍频+内部div分频器分频各种时钟

3.PLL说明
PLL是倍频电路的总称,分4种PLL,分别为APLL、MPLL、EPLL、VPLL

3. 框图详解

在这里插入图片描述
在这里插入图片描述
1.MUX开关
作用:选择时钟来源
设置方式:寄存器clock source x
在这里插入图片描述

2.DIV分频器
功能:将倍频之后的高频时钟根据需求分成不同频率的时钟
设置方式:寄存器CLK_DIVX
在这里插入图片描述

4 .关键性寄存器

xPLL_LOCK:主要控制PLL锁定周期的。
/xPLL_CON0/xPLL_CON1:主要用来打开/关闭PLL电路,设置PLL的倍频参数,查看PLL锁定状态等

CLK_SRCn(n:0~6):设置时钟来源的,对应时钟框图中的MUX开关。
CLK_DIVn:各模块的分频器参数配置

CLK_SRC_MASKn:决定MUX开关n选1后是否能继续通过(默认通过)
CLK_GATE_x:类似于CLK_SRC_MASK,对时钟进行开关控制
CLK_DIV_STATn:状态寄存器,是否正在分频
CLK_MUX_STATn:状态寄存器,是否正在选择

PLL(xPLL_CON)+ MUX (CLK_SRCn) + DIV(CLK_DIV)
在这里插入图片描述

5.设置PLL的方法:设置M P S

0cHM6Ly9ibG9nLmNzZG4ubmV0L3NodW4xMjk2,size_16,color_FFFFFF,t_70)

#define APLL_MDIV      	 		0x7d		// 125
#define APLL_PDIV       		0x3
#define APLL_SDIV       		0x1//MPS控制频率的公式:
//FOUT = MDIV*FIN/(PDIV*2^(SDIV-1))=0x7d*24/(0x3*2^(1-1))=1000 MHz
#define set_pll(mdiv, pdiv, sdiv)	(1<<31 | mdiv<<16 | pdiv<<8 | sdiv)
#define APLL_VAL			set_pll(APLL_MDIV,APLL_PDIV,APLL_SDIV)ldr	r1, =APLL_VAL						
str	r1, [r0, #APLL_CON0_OFFSET]

6.汇编代码演示

start.s

#define WTCON		0xE2700000
#define SVC_STACK	0xd0037d80.global _start
_start:// 第1步:关看门狗(向WTCON的bit5写入0即可)ldr r0, =WTCONldr r1, =0x0str r1, [r0]// 第2步:初始化时钟bl clock_init// 第3步:设置SVC栈ldr sp, =SVC_STACK// 第4步:开/关icachemrc p15,0,r0,c1,c0,0;			// 读出cp15的c1到r0中//bic r0, r0, #(1<<12)			// bit12 置0  关icacheorr r0, r0, #(1<<12)			// bit12 置1  开icachemcr p15,0,r0,c1,c0,0;// 从这里之后就可以开始调用C程序了bl led_blink  // led_blink是C语言实现的一个函数// 汇编最后的这个死循环不能丢b .	

clock.S

// 时钟控制器基地址
#define ELFIN_CLOCK_POWER_BASE		0xE0100000	// 时钟相关的寄存器相对时钟控制器基地址的偏移值
#define APLL_LOCK_OFFSET		0x00		
#define MPLL_LOCK_OFFSET		0x08#define APLL_CON0_OFFSET		0x100
#define APLL_CON1_OFFSET		0x104
#define MPLL_CON_OFFSET			0x108#define CLK_SRC0_OFFSET			0x200
#define CLK_SRC1_OFFSET			0x204
#define CLK_SRC2_OFFSET			0x208
#define CLK_SRC3_OFFSET			0x20c
#define CLK_SRC4_OFFSET			0x210
#define CLK_SRC5_OFFSET			0x214
#define CLK_SRC6_OFFSET			0x218
#define CLK_SRC_MASK0_OFFSET	0x280
#define CLK_SRC_MASK1_OFFSET	0x284#define CLK_DIV0_OFFSET			0x300
#define CLK_DIV1_OFFSET			0x304
#define CLK_DIV2_OFFSET			0x308
#define CLK_DIV3_OFFSET			0x30c
#define CLK_DIV4_OFFSET			0x310
#define CLK_DIV5_OFFSET			0x314
#define CLK_DIV6_OFFSET			0x318
#define CLK_DIV7_OFFSET			0x31c#define CLK_DIV0_MASK			0x7fffffff// 这些M、P、S的配置值都是查数据手册中典型时钟配置值的推荐配置得来的。
// 这些配置值是三星推荐的,因此工作最稳定。如果是自己随便瞎拼凑出来的那就要
// 经过严格测试,才能保证一定对。
#define APLL_MDIV      	 		0x7d		// 125
#define APLL_PDIV       		0x3
#define APLL_SDIV       		0x1#define MPLL_MDIV				0x29b		// 667
#define MPLL_PDIV				0xc
#define MPLL_SDIV				0x1#define set_pll(mdiv, pdiv, sdiv)	(1<<31 | mdiv<<16 | pdiv<<8 | sdiv)
#define APLL_VAL			set_pll(APLL_MDIV,APLL_PDIV,APLL_SDIV)
#define MPLL_VAL			set_pll(MPLL_MDIV,MPLL_PDIV,MPLL_SDIV).global clock_init
clock_init:ldr	r0, =ELFIN_CLOCK_POWER_BASE// 1 设置各种时钟开关,暂时不使用PLLldr	r1, =0x0// 芯片手册P378 寄存器CLK_SRC:Select clock source 0 (Main)str	r1, [r0, #CLK_SRC0_OFFSET]				// 2 设置锁定时间,使用默认值即可// 设置PLL后,时钟从Fin提升到目标频率时,需要一定的时间,即锁定时间ldr	r1,	=0x0000FFFF					str	r1,	[r0, #APLL_LOCK_OFFSET]				str r1, [r0, #MPLL_LOCK_OFFSET]	 				// 3 设置分频// 清bit[0~31]ldr r1, [r0, #CLK_DIV0_OFFSET]					ldr	r2, =CLK_DIV0_MASK					bic	r1, r1, r2ldr	r2, =0x14131440						orr	r1, r1, r2str	r1, [r0, #CLK_DIV0_OFFSET]// 4 设置PLL// FOUT = MDIV*FIN/(PDIV*2^(SDIV-1))=0x7d*24/(0x3*2^(1-1))=1000 MHzldr	r1, =APLL_VAL						str	r1, [r0, #APLL_CON0_OFFSET]// FOUT = MDIV*FIN/(PDIV*2^SDIV)=0x29b*24/(0xc*2^1)= 667 MHzldr	r1, =MPLL_VAL						str	r1, [r0, #MPLL_CON_OFFSET]// 5 设置各种时钟开关,使用PLLldr	r1, [r0, #CLK_SRC0_OFFSET]ldr	r2, =0x10001111orr	r1, r1, r2str	r1, [r0, #CLK_SRC0_OFFSET]mov	pc, lr

7.C代码演示

clock.c

// 时钟控制器基地址
#define ELFIN_CLOCK_POWER_BASE		0xE0100000	// 时钟相关的寄存器相对时钟控制器基地址的偏移值
#define APLL_LOCK_OFFSET		0x00		
#define MPLL_LOCK_OFFSET		0x08#define APLL_CON0_OFFSET		0x100
#define APLL_CON1_OFFSET		0x104
#define MPLL_CON_OFFSET			0x108#define CLK_SRC0_OFFSET			0x200
#define CLK_SRC1_OFFSET			0x204
#define CLK_SRC2_OFFSET			0x208
#define CLK_SRC3_OFFSET			0x20c
#define CLK_SRC4_OFFSET			0x210
#define CLK_SRC5_OFFSET			0x214
#define CLK_SRC6_OFFSET			0x218
#define CLK_SRC_MASK0_OFFSET	0x280
#define CLK_SRC_MASK1_OFFSET	0x284#define CLK_DIV0_OFFSET			0x300
#define CLK_DIV1_OFFSET			0x304
#define CLK_DIV2_OFFSET			0x308
#define CLK_DIV3_OFFSET			0x30c
#define CLK_DIV4_OFFSET			0x310
#define CLK_DIV5_OFFSET			0x314
#define CLK_DIV6_OFFSET			0x318
#define CLK_DIV7_OFFSET			0x31c#define CLK_DIV0_MASK			0x7fffffff// 这些M、P、S的配置值都是查数据手册中典型时钟配置值的推荐配置得来的。
// 这些配置值是三星推荐的,因此工作最稳定。如果是自己随便瞎拼凑出来的那就要
// 经过严格测试,才能保证一定对。
#define APLL_MDIV      	 		0x7d		// 125
#define APLL_PDIV       		0x3
#define APLL_SDIV       		0x1#define MPLL_MDIV				0x29b		// 667
#define MPLL_PDIV				0xc
#define MPLL_SDIV				0x1#define set_pll(mdiv, pdiv, sdiv)	(1<<31 | mdiv<<16 | pdiv<<8 | sdiv)
#define APLL_VAL			set_pll(APLL_MDIV,APLL_PDIV,APLL_SDIV)
#define MPLL_VAL			set_pll(MPLL_MDIV,MPLL_PDIV,MPLL_SDIV)#define REG_CLK_SRC0	(ELFIN_CLOCK_POWER_BASE + CLK_SRC0_OFFSET)
#define REG_APLL_LOCK	(ELFIN_CLOCK_POWER_BASE + APLL_LOCK_OFFSET)
#define REG_MPLL_LOCK	(ELFIN_CLOCK_POWER_BASE + MPLL_LOCK_OFFSET)
#define REG_CLK_DIV0	(ELFIN_CLOCK_POWER_BASE + CLK_DIV0_OFFSET)
#define REG_APLL_CON0	(ELFIN_CLOCK_POWER_BASE + APLL_CON0_OFFSET)
#define REG_MPLL_CON	(ELFIN_CLOCK_POWER_BASE + MPLL_CON_OFFSET)#define rREG_CLK_SRC0	(*(volatile unsigned int *)REG_CLK_SRC0)
#define rREG_APLL_LOCK	(*(volatile unsigned int *)REG_APLL_LOCK)
#define rREG_MPLL_LOCK	(*(volatile unsigned int *)REG_MPLL_LOCK)
#define rREG_CLK_DIV0	(*(volatile unsigned int *)REG_CLK_DIV0)
#define rREG_APLL_CON0	(*(volatile unsigned int *)REG_APLL_CON0)
#define rREG_MPLL_CON	(*(volatile unsigned int *)REG_MPLL_CON)void clock_init(void)
{// 1 设置各种时钟开关,暂时不使用PLLrREG_CLK_SRC0 = 0x0;// 2 设置锁定时间,使用默认值即可// 设置PLL后,时钟从Fin提升到目标频率时,需要一定的时间,即锁定时间rREG_APLL_LOCK = 0x0000ffff;rREG_MPLL_LOCK = 0x0000ffff;// 3 设置分频// 清bit[0~31]rREG_CLK_DIV0 = 0x14131440;// 4 设置PLL// FOUT = MDIV*FIN/(PDIV*2^(SDIV-1))=0x7d*24/(0x3*2^(1-1))=1000 MHzrREG_APLL_CON0 = APLL_VAL;// FOUT = MDIV*FIN/(PDIV*2^SDIV)=0x29b*24/(0xc*2^1)= 667 MHzrREG_MPLL_CON = MPLL_VAL;// 5 设置各种时钟开关,使用PLLrREG_CLK_SRC0 = 0x10001111;
}

C代码写寄存器语法总结:
1.register = (想写入寄存器的数字)
2.register是寄存器经过处理之后的C语法变量
3.处理:寄存器地址转换为指针类型,再进行解引用

C代码写寄存器示例:

//寄存器地址表示方法1
#define REG_APLL_LOCK 0x??????; //寄存器地址//寄存器地址表示方法2
#define ELFIN_CLOCK_POWER_BASE	0xE0100000	// 基地址
#define REG_CLK_SRC0	(ELFIN_CLOCK_POWER_BASE + CLK_SRC0_OFFSET)//基址+变址#define rREG_APLL_LOCK	(*(volatile unsigned int *)REG_APLL_LOCK)rREG_APLL_LOCK	= 0x0000ffff;

这篇关于S5PV210开发1.0.6------时钟系统的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/484221

相关文章

不懂推荐算法也能设计推荐系统

本文以商业化应用推荐为例,告诉我们不懂推荐算法的产品,也能从产品侧出发, 设计出一款不错的推荐系统。 相信很多新手产品,看到算法二字,多是懵圈的。 什么排序算法、最短路径等都是相对传统的算法(注:传统是指科班出身的产品都会接触过)。但对于推荐算法,多数产品对着网上搜到的资源,都会无从下手。特别当某些推荐算法 和 “AI”扯上关系后,更是加大了理解的难度。 但,不了解推荐算法,就无法做推荐系

这15个Vue指令,让你的项目开发爽到爆

1. V-Hotkey 仓库地址: github.com/Dafrok/v-ho… Demo: 戳这里 https://dafrok.github.io/v-hotkey 安装: npm install --save v-hotkey 这个指令可以给组件绑定一个或多个快捷键。你想要通过按下 Escape 键后隐藏某个组件,按住 Control 和回车键再显示它吗?小菜一碟: <template

基于人工智能的图像分类系统

目录 引言项目背景环境准备 硬件要求软件安装与配置系统设计 系统架构关键技术代码示例 数据预处理模型训练模型预测应用场景结论 1. 引言 图像分类是计算机视觉中的一个重要任务,目标是自动识别图像中的对象类别。通过卷积神经网络(CNN)等深度学习技术,我们可以构建高效的图像分类系统,广泛应用于自动驾驶、医疗影像诊断、监控分析等领域。本文将介绍如何构建一个基于人工智能的图像分类系统,包括环境

水位雨量在线监测系统概述及应用介绍

在当今社会,随着科技的飞速发展,各种智能监测系统已成为保障公共安全、促进资源管理和环境保护的重要工具。其中,水位雨量在线监测系统作为自然灾害预警、水资源管理及水利工程运行的关键技术,其重要性不言而喻。 一、水位雨量在线监测系统的基本原理 水位雨量在线监测系统主要由数据采集单元、数据传输网络、数据处理中心及用户终端四大部分构成,形成了一个完整的闭环系统。 数据采集单元:这是系统的“眼睛”,

Hadoop企业开发案例调优场景

需求 (1)需求:从1G数据中,统计每个单词出现次数。服务器3台,每台配置4G内存,4核CPU,4线程。 (2)需求分析: 1G / 128m = 8个MapTask;1个ReduceTask;1个mrAppMaster 平均每个节点运行10个 / 3台 ≈ 3个任务(4    3    3) HDFS参数调优 (1)修改:hadoop-env.sh export HDFS_NAMENOD

第10章 中断和动态时钟显示

第10章 中断和动态时钟显示 从本章开始,按照书籍的划分,第10章开始就进入保护模式(Protected Mode)部分了,感觉从这里开始难度突然就增加了。 书中介绍了为什么有中断(Interrupt)的设计,中断的几种方式:外部硬件中断、内部中断和软中断。通过中断做了一个会走的时钟和屏幕上输入字符的程序。 我自己理解中断的一些作用: 为了更好的利用处理器的性能。协同快速和慢速设备一起工作

嵌入式QT开发:构建高效智能的嵌入式系统

摘要: 本文深入探讨了嵌入式 QT 相关的各个方面。从 QT 框架的基础架构和核心概念出发,详细阐述了其在嵌入式环境中的优势与特点。文中分析了嵌入式 QT 的开发环境搭建过程,包括交叉编译工具链的配置等关键步骤。进一步探讨了嵌入式 QT 的界面设计与开发,涵盖了从基本控件的使用到复杂界面布局的构建。同时也深入研究了信号与槽机制在嵌入式系统中的应用,以及嵌入式 QT 与硬件设备的交互,包括输入输出设

OpenHarmony鸿蒙开发( Beta5.0)无感配网详解

1、简介 无感配网是指在设备联网过程中无需输入热点相关账号信息,即可快速实现设备配网,是一种兼顾高效性、可靠性和安全性的配网方式。 2、配网原理 2.1 通信原理 手机和智能设备之间的信息传递,利用特有的NAN协议实现。利用手机和智能设备之间的WiFi 感知订阅、发布能力,实现了数字管家应用和设备之间的发现。在完成设备间的认证和响应后,即可发送相关配网数据。同时还支持与常规Sof

JAVA智听未来一站式有声阅读平台听书系统小程序源码

智听未来,一站式有声阅读平台听书系统 🌟&nbsp;开篇:遇见未来,从“智听”开始 在这个快节奏的时代,你是否渴望在忙碌的间隙,找到一片属于自己的宁静角落?是否梦想着能随时随地,沉浸在知识的海洋,或是故事的奇幻世界里?今天,就让我带你一起探索“智听未来”——这一站式有声阅读平台听书系统,它正悄悄改变着我们的阅读方式,让未来触手可及! 📚&nbsp;第一站:海量资源,应有尽有 走进“智听

活用c4d官方开发文档查询代码

当你问AI助手比如豆包,如何用python禁止掉xpresso标签时候,它会提示到 这时候要用到两个东西。https://developers.maxon.net/论坛搜索和开发文档 比如这里我就在官方找到正确的id描述 然后我就把参数标签换过来