【每日一题】最小体力消耗路径

2023-12-11 22:37

本文主要是介绍【每日一题】最小体力消耗路径,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

文章目录

  • Tag
  • 题目来源
  • 解题思路
    • 方法一:二分枚举答案
  • 写在最后

Tag

【二分枚举答案】【图】【2023-12-11】


题目来源

1631. 最小体力消耗路径


解题思路

拿到这个题目,计算从左上角到右下角的最小体力消耗值,有点像 64. 最小路径和。在 64 题中,需要计算出从左上角到右下角的最小路径和,每次行走只能向下或者向右走一格。而在本题中,行走有四个方向。

动态规划行不行?

因为 64 题中「向下或者向右走一格」,所以从左上角到达每个格子的最小路径和(以下简称为状态)只会和左边或者上边的状态有关,而左边和上边格子的状态在计算当前格子的状态是就已经计算完毕了。有了这样的递推关系就可以使用动态规划来解题。

但是在本题中上下左右四个方向都是可以行走的,那么使用动态规划的方法行不行,不行。比如示例 3,根据动态规划思想,从左上角到达最后一行第二列的 1 的最小体力消耗(以下简称为状态)可以从左侧的 1 以及上面的 2 转移得到,更新最后一行第二列的 1 处的状态为较大值为 1。这明显和答案不符。

感觉 DP 修改一下是可以的,但是还能想到如何修改,欢迎大家评论区讨论。

正确思路

看到题目中出现 「最小的最大值」字眼,一般可以使用「二分枚举答案」的方法。

看到题目中有「四个方向」或者「八个方向」的关键字,这就是在考察图。二维数组中的每一个整数可以当做一个节点,相邻两个整数直接的差值就是相邻节点之间的权值。

接下来就利用二分枚举答案的方法来解决本题。

方法一:二分枚举答案

思路

首先,我们可以将这个问题转化成一个「判定性」问题,即:是否存在一条从左上角到右下角的路径,其经过的所有边权的最大值不超过 x ?这个判定性问题解决起来并不复杂,我们只要从左上角开始进行深度优先搜索或者广度优先搜索,在搜索的过程中只允许经过边权不超过 x 的边,搜索结束后判断是否能到达右下角即可。(以上内容部分参考 力扣官方题解)

随着 x 的增大,原先可以经过的边现在依然可以经过。因此如果 x = x0 时,我们可以从左上角到达右下角,那么当 x > x0 时也同样可以到达右下角。于是我们可以使用二分枚举答案的方法来解决。

由于格子的高度范围为 [ 1 , 1 0 6 ] [1, 10^6] [1,106],因此我们可以在 [ 0 , 1 0 6 − 1 ] [0, 10^6-1] [0,1061] 的范围上对 x 进行二分枚举答案。在每一次枚举中使用深度优先搜索或者广度优先搜索来判断是否可以从左上角到达右下角,并根据判定结果更新二分查找的左边界和右边界。

我们选择广度优先搜索的方法来判断,具体实现见代码。

算法

class Solution {
public:int minimumEffortPath(vector<vector<int>>& heights) {const int dirs[4][2] = {{-1, 0}, {1, 0}, {0, -1}, {0, 1}};int m = heights.size(), n = heights[0].size();int left = 0, right = 999999, res = 0;while (left <= right) {int mid = left + ((right - left) >> 1);queue<pair<int, int>> q;q.emplace(0, 0);vector<int> seen(m*n);seen[0] = 1;while (!q.empty()) {auto [x, y] = q.front();q.pop();for (int i = 0; i < 4; ++i) {int nx = dirs[i][0] + x;int ny = dirs[i][1] + y;if (nx >= 0 && nx < m && ny >= 0 && ny < n && !seen[nx * n + ny] && abs(heights[x][y] - heights[nx][ny]) <= mid) {q.emplace(nx, ny);seen[nx*n + ny] = 1;}}}if (seen[m*n - 1]) {    // 判断是否可以到达右下角res = mid;right = mid - 1;}else {left = mid + 1;}}return res;}
};

复杂度分析

时间复杂度: O ( m n l o g C ) O(mnlogC) O(mnlogC) m m m n n n 分别是地图的行数和列数, C C C 是格子的最大高度。

空间复杂度: O ( m n ) O(mn) O(mn),为广搜中占用的空间。


写在最后

如果您发现文章有任何错误或者对文章有任何疑问,欢迎私信博主或者在评论区指出 💬💬💬。

如果大家有更优的时间、空间复杂度的方法,欢迎评论区交流。

最后,感谢您的阅读,如果有所收获的话可以给我点一个 👍 哦。

这篇关于【每日一题】最小体力消耗路径的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/482344

相关文章

hdu2544(单源最短路径)

模板题: //题意:求1到n的最短路径,模板题#include<iostream>#include<algorithm>#include<cstring>#include<stack>#include<queue>#include<set>#include<map>#include<stdio.h>#include<stdlib.h>#include<ctype.h>#i

poj 1258 Agri-Net(最小生成树模板代码)

感觉用这题来当模板更适合。 题意就是给你邻接矩阵求最小生成树啦。~ prim代码:效率很高。172k...0ms。 #include<stdio.h>#include<algorithm>using namespace std;const int MaxN = 101;const int INF = 0x3f3f3f3f;int g[MaxN][MaxN];int n

poj 1287 Networking(prim or kruscal最小生成树)

题意给你点与点间距离,求最小生成树。 注意点是,两点之间可能有不同的路,输入的时候选择最小的,和之前有道最短路WA的题目类似。 prim代码: #include<stdio.h>const int MaxN = 51;const int INF = 0x3f3f3f3f;int g[MaxN][MaxN];int P;int prim(){bool vis[MaxN];

poj 2349 Arctic Network uva 10369(prim or kruscal最小生成树)

题目很麻烦,因为不熟悉最小生成树的算法调试了好久。 感觉网上的题目解释都没说得很清楚,不适合新手。自己写一个。 题意:给你点的坐标,然后两点间可以有两种方式来通信:第一种是卫星通信,第二种是无线电通信。 卫星通信:任何两个有卫星频道的点间都可以直接建立连接,与点间的距离无关; 无线电通信:两个点之间的距离不能超过D,无线电收发器的功率越大,D越大,越昂贵。 计算无线电收发器D

poj 1734 (floyd求最小环并打印路径)

题意: 求图中的一个最小环,并打印路径。 解析: ans 保存最小环长度。 一直wa,最后终于找到原因,inf开太大爆掉了。。。 虽然0x3f3f3f3f用memset好用,但是还是有局限性。 代码: #include <iostream>#include <cstdio>#include <cstdlib>#include <algorithm>#incl

hdu 1102 uva 10397(最小生成树prim)

hdu 1102: 题意: 给一个邻接矩阵,给一些村庄间已经修的路,问最小生成树。 解析: 把已经修的路的权值改为0,套个prim()。 注意prim 最外层循坏为n-1。 代码: #include <iostream>#include <cstdio>#include <cstdlib>#include <algorithm>#include <cstri

poj 2175 最小费用最大流TLE

题意: 一条街上有n个大楼,坐标为xi,yi,bi个人在里面工作。 然后防空洞的坐标为pj,qj,可以容纳cj个人。 从大楼i中的人到防空洞j去避难所需的时间为 abs(xi - pi) + (yi - qi) + 1。 现在设计了一个避难计划,指定从大楼i到防空洞j避难的人数 eij。 判断如果按照原计划进行,所有人避难所用的时间总和是不是最小的。 若是,输出“OPETIMAL",若

poj 2135 有流量限制的最小费用最大流

题意: 农场里有n块地,其中约翰的家在1号地,二n号地有个很大的仓库。 农场有M条道路(双向),道路i连接着ai号地和bi号地,长度为ci。 约翰希望按照从家里出发,经过若干块地后到达仓库,然后再返回家中的顺序带朋友参观。 如果要求往返不能经过同一条路两次,求参观路线总长度的最小值。 解析: 如果只考虑去或者回的情况,问题只不过是无向图中两点之间的最短路问题。 但是现在要去要回

poj 3422 有流量限制的最小费用流 反用求最大 + 拆点

题意: 给一个n*n(50 * 50) 的数字迷宫,从左上点开始走,走到右下点。 每次只能往右移一格,或者往下移一格。 每个格子,第一次到达时可以获得格子对应的数字作为奖励,再次到达则没有奖励。 问走k次这个迷宫,最大能获得多少奖励。 解析: 拆点,拿样例来说明: 3 2 1 2 3 0 2 1 1 4 2 3*3的数字迷宫,走两次最大能获得多少奖励。 将每个点拆成两个

poj 2195 bfs+有流量限制的最小费用流

题意: 给一张n * m(100 * 100)的图,图中” . " 代表空地, “ M ” 代表人, “ H ” 代表家。 现在,要你安排每个人从他所在的地方移动到家里,每移动一格的消耗是1,求最小的消耗。 人可以移动到家的那一格但是不进去。 解析: 先用bfs搞出每个M与每个H的距离。 然后就是网络流的建图过程了,先抽象出源点s和汇点t。 令源点与每个人相连,容量为1,费用为