【学习笔记】lyndon分解

2023-12-09 20:04
文章标签 学习 笔记 分解 lyndon

本文主要是介绍【学习笔记】lyndon分解,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

摘抄自quack的ppt。

这部分和 s a sa sa的关联比较大,可以加深对 s a sa sa的理解。

Part 1

如果字符串 s s s的字典序在 s s s以及 s s s的所有后缀中是最小的,则称 s s s是一个 lyndon \text{lyndon} lyndon串。

lyndon \text{lyndon} lyndon分解,指的是把一个字符串分成若干段,每一段都是一个 lyndon \text{lyndon} lyndon串,问最少的分割段数。

方法一:用后缀数组 s a [ 1 ] sa[1] sa[1]就是 lyndon \text{lyndon} lyndon分解的最后那一段, lyndon \text{lyndon} lyndon分解倒数第二段就是把 s a [ 1 ] sa[1] sa[1]那一段排除之后排的最靠前的 s a sa sa,以此类推。

s a sa sa可以用来 lyndon \text{lyndon} lyndon分解依赖于以下结论:

定义数组 a [ i ] a[i] a[i]为最小的 j j j,使得 j > i j>i j>i S [ j : ∣ S ∣ − 1 ] < S [ i : ∣ S ∣ − 1 ] S[j:|S|-1]<S[i:|S|-1] S[j:S1]<S[i:S1],如果不存在这样的 j j j,可以认为 a i = ∣ S ∣ a_i=|S| ai=S

那么, S S S lyndon \text{lyndon} lyndon分解的第一项为 S [ 0 : a [ 0 ] − 1 ] S[0:a[0]-1] S[0:a[0]1],且后面 m − 1 m-1 m1项就是 S [ a [ 0 ] : ∣ S ∣ − 1 ] S[a[0]:|S|-1] S[a[0]:S1] lyndon \text{lyndon} lyndon分解。

证明:显然此时不能划分到 a [ 0 ] a[0] a[0]之后,否则可以根据原串后缀的信息道出矛盾。因此只需论证划分到 a [ 0 ] a[0] a[0]合法即可。注意到此时 S [ a [ 0 ] ] ≤ S [ 0 ] S[a[0]]\le S[0] S[a[0]]S[0],因此对于任意 j ∈ [ 1 , a [ 0 ] − 1 ] j\in [1,a[0]-1] j[1,a[0]1],一定满足 S [ 0 : a [ 0 ] − j − 1 ] ≠ S [ j : a [ 0 ] − 1 ] S[0:a[0]-j-1]\ne S[j:a[0]-1] S[0:a[0]j1]=S[j:a[0]1],又因为 s a [ 0 ] < s a [ j ] sa[0]<sa[j] sa[0]<sa[j],因此 S [ 0 : a [ 0 ] − 1 ] S[0:a[0]-1] S[0:a[0]1]一定是它的所有后缀当中最小的。

基本性质:

1.1 1.1 1.1 若字符串 u , v u,v u,v lyndon \text{lyndon} lyndon串且 u < v u<v u<v,则 u v uv uv lyndon \text{lyndon} lyndon串。

1.2 1.2 1.2 若字符串 s s s lyndon \text{lyndon} lyndon串, s ′ a s'a sa s s s的前缀,那么 s ′ b ( b > a ) s'b(b>a) sb(b>a) lyndon \text{lyndon} lyndon串。(注意 s ′ a s'a sa不一定是 lyndon \text{lyndon} lyndon串)

方法二:duval 算法

每次维护一个前缀的 lyndon \text{lyndon} lyndon分解。这个前缀 S [ 1 : k − 1 ] S[1:k-1] S[1:k1]可以被分解成 s 1 , . . . , s g s_1,...,s_g s1,...,sg这些 lyndon \text{lyndon} lyndon串和 S [ i : k − 1 ] S[i:k-1] S[i:k1]这个近似 lyndon \text{lyndon} lyndon串(形如 w k w ′ w^kw' wkw w w w是一个 lyndon \text{lyndon} lyndon串, w ′ w' w w w w的前缀)。

具体的,三个变量 i , j , k i,j,k i,j,k维持一个循环不变式:

  • S [ 0 : i − 1 ] = s 1 s 2 . . . s g S[0:i-1]=s_1s_2...s_g S[0:i1]=s1s2...sg 是已经固定下来的分解,满足 s l s_l sl lyndon \text{lyndon} lyndon串,且 s l ≥ s l + 1 s_l\ge s_{l+1} slsl+1(否则可以合并)。
  • S [ i : k − 1 ] = t 1 t 2 . . . t h v S[i:k-1]=t_1t_2...t_hv S[i:k1]=t1t2...thv是没有固定的分解,满足 t 1 t_1 t1 lyndon \text{lyndon} lyndon串, t 1 = t 2 = . . . = t h t_1=t_2=...=t_h t1=t2=...=th v v v t h t_h th的(可为空的)真前缀,令 j = k − ∣ t 1 ∣ j=k-|t_1| j=kt1

在这里插入图片描述

复杂度为 O ( n ) O(n) O(n)比sa快啊

代码

Part 2

lyndon \text{lyndon} lyndon分解的应用:

1.3 1.3 1.3 给定长为 n n n的字符串 S S S,求出 S S S的最小表示法。

方法:将 S S SS SS lyndon \text{lyndon} lyndon分解,找到分解后最后一个字符串,它的首字符为 S S [ p ] SS[p] SS[p],且 p ∈ [ 0 , ∣ S ∣ ) p\in [0,|S|) p[0,S)。可以证明 S S [ p : p + ∣ S ∣ − 1 ] SS[p:p+|S|-1] SS[p:p+S1]是字典序最小的。(运用第一条引理,转化为比较在原串中的后缀,即sa)

1.4 1.4 1.4 给定长度为 n n n的字符串 S S S,将 S S S分为最多 k k k个串 c 1 c 2 . . . c k c_1c_2...c_k c1c2...ck,求 max ⁡ c i \max c_i maxci的最小值。

方法:看到字典序,容易想到 lyndon \text{lyndon} lyndon分解。首先把 S S S lyndon \text{lyndon} lyndon分解成 s 1 , . . . , s g s_1,...,s_g s1,...,sg,如果 k ≥ g k\ge g kg,那么答案即为 s 1 s_1 s1;否则,如果 s 1 > s 2 s_1>s_2 s1>s2,那么显然可以分成 s 1 s_1 s1和剩下的所有串,答案还是 s 1 s_1 s1。因此,考虑分解成 s 1 m s g s_1^ms_g s1msg的情况,如果 k > m k>m k>m,那么答案还是 s 1 s_1 s1,如果 k ≤ m k\le m km,那么尽量均分一下即可。

推广:多次询问,每次询问 S S S的一段后缀的答案。

考虑求出原串的sa数组,显然可以求出第一项以及重复次数(可以用哈希),这样就做完了。

1.5 1.5 1.5 S S S的每个前缀的字典序最小的后缀

首先把 S S S lyndon \text{lyndon} lyndon分解成 s 1 , . . . , s g s_1,...,s_g s1,...,sg,显然 s 1 . . . s k s_1...s_k s1...sk的字典序最小的后缀是 s k s_k sk。但是前缀取到分解出来的 lyndon \text{lyndon} lyndon串半截时,答案可能不一样。

考虑 duval \text{duval} duval算法求 lyndon \text{lyndon} lyndon分解的过程,分类讨论:

  • s [ k ] > s [ j ] s[k]>s[j] s[k]>s[j],此时 a n s [ k ] ans[k] ans[k]应该等于 i i i,因为 s [ i : k ] s[i:k] s[i:k]构成一个新的 lyndon \text{lyndon} lyndon
  • s [ k ] = s [ j ] s[k]=s[j] s[k]=s[j],此时 a n s [ k ] = a n s [ j ] + k − j ans[k]=ans[j]+k-j ans[k]=ans[j]+kj
  • s [ k ] < s [ j ] s[k]<s[j] s[k]<s[j],在 lyndon \text{lyndon} lyndon串开头时更新(或者说在之后的 lyndon \text{lyndon} lyndon串中更新)

1.6 1.6 1.6 S S S的每个前缀的字典序最大的后缀

首先把字符比较反过来,然后要尽量向左取,当 s [ k ] ≤ s [ j ] s[k]\le s[j] s[k]s[j]的时候, s [ i : k ] s[i:k] s[i:k]这一段都保持了是一个近似 lyndon \text{lyndon} lyndon串,所以都取近似 lyndon \text{lyndon} lyndon串的左端点 i i i作为答案即可。

ps:感觉这个算法就只能考论文题。。。太恶心了。。。

这篇关于【学习笔记】lyndon分解的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/474909

相关文章

利用Python快速搭建Markdown笔记发布系统

《利用Python快速搭建Markdown笔记发布系统》这篇文章主要为大家详细介绍了使用Python生态的成熟工具,在30分钟内搭建一个支持Markdown渲染、分类标签、全文搜索的私有化知识发布系统... 目录引言:为什么要自建知识博客一、技术选型:极简主义开发栈二、系统架构设计三、核心代码实现(分步解析

Java进阶学习之如何开启远程调式

《Java进阶学习之如何开启远程调式》Java开发中的远程调试是一项至关重要的技能,特别是在处理生产环境的问题或者协作开发时,:本文主要介绍Java进阶学习之如何开启远程调式的相关资料,需要的朋友... 目录概述Java远程调试的开启与底层原理开启Java远程调试底层原理JVM参数总结&nbsMbKKXJx

Java深度学习库DJL实现Python的NumPy方式

《Java深度学习库DJL实现Python的NumPy方式》本文介绍了DJL库的背景和基本功能,包括NDArray的创建、数学运算、数据获取和设置等,同时,还展示了如何使用NDArray进行数据预处理... 目录1 NDArray 的背景介绍1.1 架构2 JavaDJL使用2.1 安装DJL2.2 基本操

HarmonyOS学习(七)——UI(五)常用布局总结

自适应布局 1.1、线性布局(LinearLayout) 通过线性容器Row和Column实现线性布局。Column容器内的子组件按照垂直方向排列,Row组件中的子组件按照水平方向排列。 属性说明space通过space参数设置主轴上子组件的间距,达到各子组件在排列上的等间距效果alignItems设置子组件在交叉轴上的对齐方式,且在各类尺寸屏幕上表现一致,其中交叉轴为垂直时,取值为Vert

Ilya-AI分享的他在OpenAI学习到的15个提示工程技巧

Ilya(不是本人,claude AI)在社交媒体上分享了他在OpenAI学习到的15个Prompt撰写技巧。 以下是详细的内容: 提示精确化:在编写提示时,力求表达清晰准确。清楚地阐述任务需求和概念定义至关重要。例:不用"分析文本",而用"判断这段话的情感倾向:积极、消极还是中性"。 快速迭代:善于快速连续调整提示。熟练的提示工程师能够灵活地进行多轮优化。例:从"总结文章"到"用

【前端学习】AntV G6-08 深入图形与图形分组、自定义节点、节点动画(下)

【课程链接】 AntV G6:深入图形与图形分组、自定义节点、节点动画(下)_哔哩哔哩_bilibili 本章十吾老师讲解了一个复杂的自定义节点中,应该怎样去计算和绘制图形,如何给一个图形制作不间断的动画,以及在鼠标事件之后产生动画。(有点难,需要好好理解) <!DOCTYPE html><html><head><meta charset="UTF-8"><title>06

学习hash总结

2014/1/29/   最近刚开始学hash,名字很陌生,但是hash的思想却很熟悉,以前早就做过此类的题,但是不知道这就是hash思想而已,说白了hash就是一个映射,往往灵活利用数组的下标来实现算法,hash的作用:1、判重;2、统计次数;

零基础学习Redis(10) -- zset类型命令使用

zset是有序集合,内部除了存储元素外,还会存储一个score,存储在zset中的元素会按照score的大小升序排列,不同元素的score可以重复,score相同的元素会按照元素的字典序排列。 1. zset常用命令 1.1 zadd  zadd key [NX | XX] [GT | LT]   [CH] [INCR] score member [score member ...]

【机器学习】高斯过程的基本概念和应用领域以及在python中的实例

引言 高斯过程(Gaussian Process,简称GP)是一种概率模型,用于描述一组随机变量的联合概率分布,其中任何一个有限维度的子集都具有高斯分布 文章目录 引言一、高斯过程1.1 基本定义1.1.1 随机过程1.1.2 高斯分布 1.2 高斯过程的特性1.2.1 联合高斯性1.2.2 均值函数1.2.3 协方差函数(或核函数) 1.3 核函数1.4 高斯过程回归(Gauss

【学习笔记】 陈强-机器学习-Python-Ch15 人工神经网络(1)sklearn

系列文章目录 监督学习:参数方法 【学习笔记】 陈强-机器学习-Python-Ch4 线性回归 【学习笔记】 陈强-机器学习-Python-Ch5 逻辑回归 【课后题练习】 陈强-机器学习-Python-Ch5 逻辑回归(SAheart.csv) 【学习笔记】 陈强-机器学习-Python-Ch6 多项逻辑回归 【学习笔记 及 课后题练习】 陈强-机器学习-Python-Ch7 判别分析 【学