【Python学习笔记】23:numpy的add和multiply

2023-12-09 15:19

本文主要是介绍【Python学习笔记】23:numpy的add和multiply,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

add和multiply是numpy里比较常用的两种运算,分别是加法和乘法运算。

加法运算

>>> np.add.accumulate([1,2,3]) #累加
array([1, 3, 6], dtype=int32)

累加np.add.accumulate()适用于python序列(串不行)和numpy数组,每一个位置的元素和前面的所有元素加起来求和,得到的始终是numpy数组。

>>> np.add.reduce([1,2,3,4,5]) #连加
15

连加np.add.reduce()是将所有元素加在一起求和。

>>> x=np.array([1,2,3,4])
>>> np.add.at(x,[0,2],3)
>>> x
array([4, 2, 6, 4])

np.add.at()是将传入的数组中制定下标位置的元素加上指定的值,如上面是将x中下标为0和为2的元素加上了3,这会改变传入的数组x。

>>> np.add.outer([1,2,3],[4,5,6,7])
array([[ 5,  6,  7,  8],[ 6,  7,  8,  9],[ 7,  8,  9, 10]])

np.add.outer()将第一个列表或数组中的每个元素依次加到第二个列表或数组中的每个元素,得到每一行。

>>> x=np.arange(8)
>>> x
array([0, 1, 2, 3, 4, 5, 6, 7])
>>> np.add.reduceat(x,[0,4,1,5,2,6,3,7]) #在各切片上作reduce运算
array([ 6,  4, 10,  5, 14,  6, 18,  7], dtype=int32)

np.add.reduceat()对于传入的数组,根据传入的list(第二个参数)作指定的变化,传入的list中的数字是成对出现的。如上面的例子中是将x中0,4部分切片作np.add.reduce()运算(也就是连加),放在第一个位置,然后第二个位置就是下标4在x中的值,也就是4,以此类推。

>>> x=np.linspace(0,15,16).reshape(4,4)
>>> x
array([[  0.,   1.,   2.,   3.],[  4.,   5.,   6.,   7.],[  8.,   9.,  10.,  11.],[ 12.,  13.,  14.,  15.]])
>>> np.add.reduceat(x,[0,3,1])
array([[ 12.,  15.,  18.,  21.],[ 12.,  13.,  14.,  15.],[ 24.,  27.,  30.,  33.]])

这个例子是对于二维数组的reduceat的用法,0->3是一个切片,1->默认下界是一个切片,所以所得第0行为原来的第0行+第1行+第2行,所得第1行为原来的第3行,所得第2行为原来的第1行+至默认结尾,也就是第1行+第2行+第3行。

总的来说,redeceat函数传入的indices参数列表中的每个元素要看它后面的元素是不是比它大,如果比它大,作两者间的切片reduce,反之,它自己对应的元素即是该处结果。对于最后一个参数,因为其后已经没有元素,我们规定最后一项为从该参数到默认结尾作reduce连加。可以看下面这个例子。

>>> np.add.reduceat(x,[0,3,1,1])
array([[ 12.,  15.,  18.,  21.],[ 12.,  13.,  14.,  15.],[  4.,   5.,   6.,   7.],[ 24.,  27.,  30.,  33.]])

四行分别是原来的0->3切片,3行,1行,1->默认切片。

>>> np.add.reduceat(x,[0,3,1,3],axis=1) #对列进行计算
array([[  3.,   3.,   3.,   3.],[ 15.,   7.,  11.,   7.],[ 27.,  11.,  19.,  11.],[ 39.,  15.,  27.,  15.]])

可以看到它还有一个默认参数axis=0表示对行进行计算,上面的例子中axis为1表示对列进行计算,从左到右的四列分别是原来的0->3列切片,3列,1->3列切片,3列。

乘法运算

>>> x=np.arange(8)
>>> x
array([0, 1, 2, 3, 4, 5, 6, 7])
>>> np.multiply.at(x,[0,1,2],5)
>>> x
array([ 0,  5, 10,  3,  4,  5,  6,  7])

乘法与加法的几个函数用法很相似,np.multiply.at()表示将某个数组中的制定下标元素乘以指定值,如上面是对x中下标为0,1,2的元素都乘以了5。这会改变原数组。

>>> np.multiply.accumulate([1,2,3,4])
array([ 1,  2,  6, 24], dtype=int32)

np.multiply.accumulate()表示累乘,每个元素和它前面的所有元素相乘,返回新的数组。

>>> np.multiply.outer([1,2,3],[4,5,6])
array([[ 4,  5,  6],[ 8, 10, 12],[12, 15, 18]])

np.multiply.outer()表示将第一个列表或数组中的每个元素依次乘到第二个列表或数组中的每个元素,得到每一行。

>>> np.multiply.reduce([1,2,3,4])
24

np.multiply.reduce表示连乘,所有元素相乘。对于二维的数组,还有下面的用法。

>>> np.multiply.reduce([[1,2,3,4],[5,6,7,8]])
array([ 5, 12, 21, 32])

这表示纵向的(外部)reduce,每个子数组的对应子元素相乘,得到新的数组。

>>> np.multiply.reduce([[1,2,3,4],[5,6,7,8]],axis=1)
array([  24, 1680])

这表示横向的(内部)reduce,每个子数组自己作reduce即可。

>>> x=np.linspace(0,15,16).reshape(4,4)
>>> x
array([[  0.,   1.,   2.,   3.],[  4.,   5.,   6.,   7.],[  8.,   9.,  10.,  11.],[ 12.,  13.,  14.,  15.]])
>>> np.multiply.reduceat(x,[0,3,1])
array([[    0.,    45.,   120.,   231.],[   12.,    13.,    14.,    15.],[  384.,   585.,   840.,  1155.]])

和add的reduceat用法一样,这三行分别是原来行的0->3切片,3行,1->默认结尾切片。

>>> np.multiply.reduceat(x,[0,3,1],axis=1)
array([[    0.,     3.,     6.],[  120.,     7.,   210.],[  720.,    11.,   990.],[ 2184.,    15.,  2730.]])

这三列分别是原来列的0->3切片,3列,1->默认结尾切片。multiply的reduceat函数作的都是外部的reduce。

这篇关于【Python学习笔记】23:numpy的add和multiply的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/474165

相关文章

使用Python实现可恢复式多线程下载器

《使用Python实现可恢复式多线程下载器》在数字时代,大文件下载已成为日常操作,本文将手把手教你用Python打造专业级下载器,实现断点续传,多线程加速,速度限制等功能,感兴趣的小伙伴可以了解下... 目录一、智能续传:从崩溃边缘抢救进度二、多线程加速:榨干网络带宽三、速度控制:做网络的好邻居四、终端交互

Python中注释使用方法举例详解

《Python中注释使用方法举例详解》在Python编程语言中注释是必不可少的一部分,它有助于提高代码的可读性和维护性,:本文主要介绍Python中注释使用方法的相关资料,需要的朋友可以参考下... 目录一、前言二、什么是注释?示例:三、单行注释语法:以 China编程# 开头,后面的内容为注释内容示例:示例:四

Python中win32包的安装及常见用途介绍

《Python中win32包的安装及常见用途介绍》在Windows环境下,PythonWin32模块通常随Python安装包一起安装,:本文主要介绍Python中win32包的安装及常见用途的相关... 目录前言主要组件安装方法常见用途1. 操作Windows注册表2. 操作Windows服务3. 窗口操作

Python中re模块结合正则表达式的实际应用案例

《Python中re模块结合正则表达式的实际应用案例》Python中的re模块是用于处理正则表达式的强大工具,正则表达式是一种用来匹配字符串的模式,它可以在文本中搜索和匹配特定的字符串模式,这篇文章主... 目录前言re模块常用函数一、查看文本中是否包含 A 或 B 字符串二、替换多个关键词为统一格式三、提

python常用的正则表达式及作用

《python常用的正则表达式及作用》正则表达式是处理字符串的强大工具,Python通过re模块提供正则表达式支持,本文给大家介绍python常用的正则表达式及作用详解,感兴趣的朋友跟随小编一起看看吧... 目录python常用正则表达式及作用基本匹配模式常用正则表达式示例常用量词边界匹配分组和捕获常用re

python实现对数据公钥加密与私钥解密

《python实现对数据公钥加密与私钥解密》这篇文章主要为大家详细介绍了如何使用python实现对数据公钥加密与私钥解密,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录公钥私钥的生成使用公钥加密使用私钥解密公钥私钥的生成这一部分,使用python生成公钥与私钥,然后保存在两个文

python删除xml中的w:ascii属性的步骤

《python删除xml中的w:ascii属性的步骤》使用xml.etree.ElementTree删除WordXML中w:ascii属性,需注册命名空间并定位rFonts元素,通过del操作删除属... 可以使用python的XML.etree.ElementTree模块通过以下步骤删除XML中的w:as

使用Python绘制3D堆叠条形图全解析

《使用Python绘制3D堆叠条形图全解析》在数据可视化的工具箱里,3D图表总能带来眼前一亮的效果,本文就来和大家聊聊如何使用Python实现绘制3D堆叠条形图,感兴趣的小伙伴可以了解下... 目录为什么选择 3D 堆叠条形图代码实现:从数据到 3D 世界的搭建核心代码逐行解析细节优化应用场景:3D 堆叠图

深度解析Python装饰器常见用法与进阶技巧

《深度解析Python装饰器常见用法与进阶技巧》Python装饰器(Decorator)是提升代码可读性与复用性的强大工具,本文将深入解析Python装饰器的原理,常见用法,进阶技巧与最佳实践,希望可... 目录装饰器的基本原理函数装饰器的常见用法带参数的装饰器类装饰器与方法装饰器装饰器的嵌套与组合进阶技巧

Python中Tensorflow无法调用GPU问题的解决方法

《Python中Tensorflow无法调用GPU问题的解决方法》文章详解如何解决TensorFlow在Windows无法识别GPU的问题,需降级至2.10版本,安装匹配CUDA11.2和cuDNN... 当用以下代码查看GPU数量时,gpuspython返回的是一个空列表,说明tensorflow没有找到