SOM网络2: 代码的实现

2023-12-09 04:59
文章标签 代码 实现 网络 som

本文主要是介绍SOM网络2: 代码的实现,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

SOM自组织映射神经网络的原理,详见博客:SOM网络1:原理讲解

训练的主函数

train_SO代码如下:

def train_SOM(X,                                                  # 输出节点行数Y,                                                  # 输出节点列数N_epoch,                                            # epochdatas,                                              # 训练数据(N x D)  N个D维样本init_lr=0.5,                                        # 初始化学习率  lrsigma = 0.5,                                        # 初始化 sigma 用来更新领域节点权重dis_func = euclidean_distance,                      # 距离公式  默认欧拉距离neighborhood_func = gaussion_neighborhood,          # 邻域节点权重公式g  默认高斯函数init_weight_fun=None,                               #初始化权重函数seed=10):  			# 获取输入的特征维度N,D =np.shape(datas)# 训练的步数N_steps =N_epoch*N#对权重进行初始化rng = np.random.RandomState(seed)if init_weight_fun is None:weights =rng.rand(X,Y,D)*2-1                            #随机初始化weights /=np.linalg.norm(weights,axis=-1,keepdims=True) #标准化else:weights = init_weight_fun(X,Y,datas)                       # 一般使用PCA初始化

PCA 初始化权重

def weights_PCA(X,Y,data):N,D=np.shape(data)weights=np.zeros([X,Y,D])pc_value,pc=np.linalg.eig(np.cov(np.transpose(data)))   # pc_vale为特征值,pc 为特征向量 DXD维pc_order=np.argsort(-pc_value)  # 特征值从大到小排序,并返回Index# 对W:[X,Y,D]进行初始化for i,c1 in enumerate(np.linspace(-1,1,X)):for j,c2 in enumerate(np.linsapce(-1,1,Y)):weights[i,j]=c1*pc[pc_order[0]]+c2*pc[pc_order[1]]   #利用最大的2个特征值对应的特征向量加权组合成i,j位置的D维表征向量	

完整的训练代码

def train_SOM(X,                                                  # 输出节点行数Y,                                                  # 输出节点列数N_epoch,                                            # epochdatas,                                              # 训练数据(N x D)  N个D维样本init_lr=0.5,                                        # 初始化学习率  lrsigma = 0.5,                                        # 初始化 sigma 用来更新领域节点权重dis_func = euclidean_distance,                      # 距离公式  默认欧拉距离neighborhood_func = gaussion_neighborhood,          # 邻域节点权重公式g  默认高斯函数init_weight_func=weights_PCA,                        #初始化权重函数seed=10):  			# 获取输入的特征维度N,D =np.shape(datas)# 训练的步数N_steps =N_epoch*N#对权重进行初始化rng = np.random.RandomState(seed)if init_weight_func is None:weights =rng.rand(X,Y,D)*2-1                            #随机初始化weights /=np.linalg.norm(weights,axis=-1,keepdims=True) #标准化else:weights = init_weight_fun(X,Y,datas)                       # 一般使用PCA初始化for n_epoch in range(N_epoch):print("Epoch %d" %(n_epoch+1))#打乱样本次序index=rng.permulation(np.arange(N))for n_step,_id in enumerate(index):# 取一个样本x=datas[_id]#计算learning rate (eta)t=N*n_epoch + n_stepeta=get_learning_rate(init_lr,t,N_steps)#计算样本距离输出的每个节点的距离,并获取激活点的位置winner=get_winner_index(x,weights,dis_func)#根据激活点的位置计算临近点的权重   随着迭代的进行sigma也需要不断减少new_sigma=get_learning_rate(sigma,t,N_steps)  # sigma 更新的方式和学习率一样g=neighborhood_fun(X,Y,winner,new_sigma) g=g*eta#进行权重的更新weights =  weights + np.expand_dims(g,-1)*(x-weights)    # 打印量化误差print("quantization_error=%.4f" %(get_quantization_error(data,weights))) return weights#计算学习率
def get_learning_rate(lr,t,max_steps):  # t当前的steps   max_steps=N x epoch  (N样本数)		return lr/(1+t/(max_steps/2))	# 获取激活(获胜点)节点的位置,与x距离最小的输出节点位置
def get_winner_index(x,w,dis_func=euclidean_distance):# 计算输入样本和各个节点的距离dis = dis_func(x,w)#找到距离最小的位置index=np.where(dis ==np.min(dis))return (index[0][0],index[1][0])#利用高斯距离法计算临近点的权重
# X,Y模板大小,c中心点的位置  def gaussion_neighborhood(X,Y,c,sigma)xx,yy=np.meshgrid(np.arange(X),np.arange(Y))d=2*sigma*sigmaax=np.exp(-np.power(xx-xx.T[c],2)/d)ay=np.exp(-np.power(yy-yy.T[c],2)/d)return (ax*ay).T# 计算欧式距离
def euclidean_distance(x,w):dis=np.expand_dims(x,axis=(0,1))-w   # x:D w:[X,Y,D]  因此需要增加两维 x:D->x:[1,1,D]return np.linalg.norm(dis,axis=-1)                   # 输出[X,Y] 二范数 即为欧拉距离# 特征标准化 (x-mu)/std
def feature_normalization(data):mu=np.mean(data,axis=0,keepdims=True)sigma=np.std(data,axis=0,keepdims=True)return (data-mu)/sigmadef get_U_Matrix(weights):X,Y,D=np.shape(weights)um=na.nan * np.zeros((X,Y,8))  #8 领域ii=[0 ,-1,-1,-1,0,1,1, 1]jj=[-1,-1, 0, 1,1,1,0,-1]for x in range(X):for y in range(Y):w_2=weights[x,y]for k,(i,j) in enumerate(zip(ii,jj)):if(x+i >=0 and x+i<X and y+j>=0 and y+j <Y):w_1=weights[x+i,y+j]um[x,y,k]=np.linalg.norm(w_1-w_2)um=np.nansum(um,axis=2)return um/um.max()#计算量化误差   计算每个样本点和映射点之间的平均距离
def get_quantization_error(data,weights):w_x,w_y=zip(*[get_winner_index(d,weights) for d in datas])error=datas-weights[w_x,w_y]             # 数据域聚类中心的距离error=np.linalg.norm(error,axis=-1)  return np.mean(error)

训练完成后,返回输出节点的weights,维度为 [ X , Y , D ] [X,Y,D] [X,Y,D], 相当于固化了模型的权重weights, weights表征了当前的训练样本。

测试

if __name__ == "__main__":# seed 数据展示columns=['area','perimeter','compactness','length_kernel','width_kernel','asymmetry_coefficient','length_kernel_groove','target']data = pd.read_csv('seeds_dataset.txt',names=columns,sep='\t+',engine='python')labs=data['target'].valueslab_names={1:'Kama',2:'Rosa',3:'Canadian'}datas=data[data.columns[:-1]].valuesN,D=np.shape(datas)print(N,D)# 对训练数据进行标准化datas = feature_normalization(datas)#SOM的训练weights=train_SOM()X=9,Y=9,N_epoch=2,datas=datas,sigma=1.5,init_weight_func=weights_PCA)# 获取UMAP  用于可视化UM=get_U_Matrix(weights)plt.figure(figure=(9,9))plt.pcolor(UM.T,cmap='bone_r')  #plotting the distance map as backgroundplt.colorbar()

测试数据
在这里插入图片描述
U_Matrix
在这里插入图片描述

  • 颜色越深说明与邻近点的关系越强烈,颜色越强说明与邻近点的关系越不强烈。

测试分类的效果

```python
if __name__ == "__main__":# seed 数据展示columns=['area','perimeter','compactness','length_kernel','width_kernel','asymmetry_coefficient','length_kernel_groove','target']data = pd.read_csv('seeds_dataset.txt',names=columns,sep='\t+',engine='python')labs=data['target'].valueslab_names={1:'Kama',2:'Rosa',3:'Canadian'}datas=data[data.columns[:-1]].valuesN,D=np.shape(datas)print(N,D)# 对训练数据进行标准化datas = feature_normalization(datas)#SOM的训练weights=train_SOM()X=9,Y=9,N_epoch=2,datas=datas,sigma=1.5,init_weight_func=weights_PCA)# 获取UMAP  用于可视化UM=get_U_Matrix(weights)plt.figure(figure=(9,9))plt.pcolor(UM.T,cmap='bone_r')  #plotting the distance map as backgroundplt.colorbar()# 查看分类的效果markers=['o','s','D']colors =['C0','C1','C2']for i in range(N):x =datas[i]w=get_winner_index(x,weights)i_lab=labs[i]-1plt.plot(w[0]+.5,w[1]+.5,markers[i_lab],markerfacecolor='None'markeredgecolor=colors[i_lab],markersize=12,markeredgewidth=2)plt.show()	  

在这里插入图片描述

这篇关于SOM网络2: 代码的实现的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/472552

相关文章

Redis实现RBAC权限管理

《Redis实现RBAC权限管理》本文主要介绍了Redis实现RBAC权限管理,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧... 目录1. 什么是 RBAC?2. 为什么使用 Redis 实现 RBAC?3. 设计 RBAC 数据结构

SpringBoot基于沙箱环境实现支付宝支付教程

《SpringBoot基于沙箱环境实现支付宝支付教程》本文介绍了如何使用支付宝沙箱环境进行开发测试,包括沙箱环境的介绍、准备步骤、在SpringBoot项目中结合支付宝沙箱进行支付接口的实现与测试... 目录一、支付宝沙箱环境介绍二、沙箱环境准备2.1 注册入驻支付宝开放平台2.2 配置沙箱环境2.3 沙箱

Nginx实现高并发的项目实践

《Nginx实现高并发的项目实践》本文主要介绍了Nginx实现高并发的项目实践,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧... 目录使用最新稳定版本的Nginx合理配置工作进程(workers)配置工作进程连接数(worker_co

python中列表list切分的实现

《python中列表list切分的实现》列表是Python中最常用的数据结构之一,经常需要对列表进行切分操作,本文主要介绍了python中列表list切分的实现,文中通过示例代码介绍的非常详细,对大家... 目录一、列表切片的基本用法1.1 基本切片操作1.2 切片的负索引1.3 切片的省略二、列表切分的高

基于Python实现一个PDF特殊字体提取工具

《基于Python实现一个PDF特殊字体提取工具》在PDF文档处理场景中,我们常常需要针对特定格式的文本内容进行提取分析,本文介绍的PDF特殊字体提取器是一款基于Python开发的桌面应用程序感兴趣的... 目录一、应用背景与功能概述二、技术架构与核心组件2.1 技术选型2.2 系统架构三、核心功能实现解析

Flutter监听当前页面可见与隐藏状态的代码详解

《Flutter监听当前页面可见与隐藏状态的代码详解》文章介绍了如何在Flutter中使用路由观察者来监听应用进入前台或后台状态以及页面的显示和隐藏,并通过代码示例讲解的非常详细,需要的朋友可以参考下... flutter 可以监听 app 进入前台还是后台状态,也可以监听当http://www.cppcn

Python使用PIL库将PNG图片转换为ICO图标的示例代码

《Python使用PIL库将PNG图片转换为ICO图标的示例代码》在软件开发和网站设计中,ICO图标是一种常用的图像格式,特别适用于应用程序图标、网页收藏夹图标等场景,本文将介绍如何使用Python的... 目录引言准备工作代码解析实践操作结果展示结语引言在软件开发和网站设计中,ICO图标是一种常用的图像

使用Python实现表格字段智能去重

《使用Python实现表格字段智能去重》在数据分析和处理过程中,数据清洗是一个至关重要的步骤,其中字段去重是一个常见且关键的任务,下面我们看看如何使用Python进行表格字段智能去重吧... 目录一、引言二、数据重复问题的常见场景与影响三、python在数据清洗中的优势四、基于Python的表格字段智能去重

Spring AI集成DeepSeek实现流式输出的操作方法

《SpringAI集成DeepSeek实现流式输出的操作方法》本文介绍了如何在SpringBoot中使用Sse(Server-SentEvents)技术实现流式输出,后端使用SpringMVC中的S... 目录一、后端代码二、前端代码三、运行项目小天有话说题外话参考资料前面一篇文章我们实现了《Spring

Nginx中location实现多条件匹配的方法详解

《Nginx中location实现多条件匹配的方法详解》在Nginx中,location指令用于匹配请求的URI,虽然location本身是基于单一匹配规则的,但可以通过多种方式实现多个条件的匹配逻辑... 目录1. 概述2. 实现多条件匹配的方式2.1 使用多个 location 块2.2 使用正则表达式