0008-【PID学习笔记 8 】控制系统的分析方法

2023-12-09 00:21

本文主要是介绍0008-【PID学习笔记 8 】控制系统的分析方法,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

写在前面

前面已经完成了控制系统的性能指标学习,从这节开始继续学习控制系统的分析方法,本文重点介绍分析方法概述和时域分析法。

一、控制系统的基本分析方法

  • 控制系统的基本分析方法包括:

    • 古典方法(经典控制理论):时域分析法、根轨迹法、频域分析法
    • 现代方法(现代控制理论):状态空间分析法
  • 利用上述方法分析系统的三大基本特性:

    • 能控能观性
    • 稳态性能
    • 动态性能

1.1 系统能控能观性

系统的动态性能与稳态性能前面已做介绍,这里介绍一下能控能观性。经典控制理论中并没有涉及这两个问题,因为经典控制理论讨论的是单入单出(SISO)系统输入输出的分析和综合问题,它的输入输出间的动态关系可以唯一的由传递函数来表示。

  • 能控性定义:
    对于一个 n n n阶系统 S S S,如果在有限的时间区间 t 0 ≤ t ≤ t a t_0\leq t ≤t_a t0tta 内,存在容许控制向量 u ( t ) u(t) u(t),能使系统从状态 x ( t 0 ) ≠ 0 x(t_0)≠0 x(t0)=0 转移到 x ( t a ) = 0 x(t_a)=0 x(ta)=0 ,则称状态 x ( t ) x(t) x(t) t 0 t_0 t0上能控。

  • 能观性定义:
    对于一个 n n n阶系统 S S S,如果对 t 0 t_0 t0 时刻,存在 t a t_a ta,即 t 0 < t a < ∞ t_0<t_a<\infty t0<ta<,根据 [ t 0 , t a ] [t_0,t_a] [t0,ta]上的 y ( t ) y(t) y(t)测量值能够唯一的确定系统在 t 0 t_0 t0 时刻的某初始状态 x 0 x_0 x0,则称 x 0 x_0 x0为系统在 [ t 0 , t a ] [t_0,t_a] [t0,ta]区间上的能观状态。

  • 系统能控能观性主要去解决两个问题:

    • ① 在有限时间内,控制作用能否使系统从初始状态转移到要求的状态?
    • ② 在有限时间内,能否通过系统输出的测量估计系统的初始状态?

    简单地说,如果系统的每一个状态变量的运动都可由输入来影响和控制,由任意的起始点达到终点,则系统能控(状态能控)。如果系统的所有状态变量的任意形式的运动均可由输出完全反映,则称系统是状态能观测的。

    1.2 时域分析法

  • 时域分析法是根据系统的微分方程,以拉普拉斯变换作为数学工具,直接解出控制系统的时间响应。然后根据响应的表达式及其描述曲线来分析系统的控制性能,如稳定性、快速性、稳态精度等。

    为了衡量控制系统性能,设立了一定的指标,所以系统分析的基本内容就是分析系统在上述三个方面的性能是否达到了规定的性能指标。

  • 时域法的特点:

    • ①直接在时间域中对系统进行分析校正,直观,准确。
    • ②可以提供系统时间响应的全部信息。
    • ③基于求解系统输出的解析解,比较烦琐。

  • 时域分析方法的基本假设

    • 系统的时间响应,不仅取决于系统本身的结构和参数,而且还与系统的初始状态以及加在系统上的外部作用信号有关。为了比较系统性能的优劣,对于外部作用信号和初始状态作典型化处理。

  • 时域法中部分动态指标的计算公式:

{ t r = π − β ω d t p = π 1 − ζ 2 ω n σ % = 3.5 ζ ω n \left\{ \begin{aligned} t_r&=\frac{\pi-\beta}{\omega_d}\\ t_p&=\frac{\pi}{\sqrt{1-\zeta^2}\omega_n}\\ \sigma\%&=\frac{3.5}{\zeta\omega_n} \end{aligned} \right. trtpσ%=ωdπβ=1ζ2 ωnπ=ζωn3.5

  • 时域法中系统稳定性的分析

    • 系统稳定的充要条件:
      • 系统所有闭环特征根均具有负的实部,或所有闭环特征根均位于左半s平面。

    • 劳斯(Routh)判据
      • 劳斯表第一列元素均大于零时系统稳定,否则系统不稳定且第一列元素符号改变的次数就是特征方程中正实部根的个数。

  • 时域法中系统稳态误差的计算:静态误差系数法

e s s = lim ⁡ s → 0 s Φ e ( s ) R ( s ) = lim ⁡ s → 0 s R ( s ) 1 1 + G 1 ( s ) H ( s ) = lim ⁡ s → 0 s R ( s ) 1 1 + K s v G 0 ( s ) e_{ss}=\underset{s\rightarrow0}{\lim}s\Phi_e(s)R(s)=\underset{s\rightarrow0}{\lim}sR(s)\frac{1}{1+G_1(s)H(s)}=\underset{s\rightarrow0}{\lim}sR(s)\frac{1}{1+\frac{K}{s^v}G_0(s)} ess=s0limsΦe(s)R(s)=s0limsR(s)1+G1(s)H(s)1=s0limsR(s)1+svKG0(s)1

r ( t ) = A ⋅ 1 ( t ) e s s p = lim ⁡ s → 0 s Φ e ( s ) R ( s ) = lim ⁡ s → 0 s ⋅ A s ⋅ 1 1 + G 1 ( s ) H ( s ) = A 1 + lim ⁡ s → 0 G 1 ( s ) H ( s ) = A 1 + K p r(t)=A\cdot1(t)e_{ssp}=\underset{s\rightarrow0}{\lim}s\Phi_e(s)R(s)=\underset{s\rightarrow0}{\lim}s\cdot\frac{A}{s}\cdot\frac{1}{1+G_1(s)H(s)}=\frac{A}{1+\underset{s\rightarrow0}{\lim}G_1(s)H(s)}=\frac{A}{1+K_p} r(t)=A1(t)essp=s0limsΦe(s)R(s)=s0limssA1+G1(s)H(s)1=1+s0limG1(s)H(s)A=1+KpA

r ( t ) = A ⋅ t e s s v = lim ⁡ s → 0 s Φ e ( s ) R ( s ) = lim ⁡ s → 0 s ⋅ A s 2 ⋅ 1 1 + G 1 ( s ) H ( s ) = A lim ⁡ s → 0 s G 1 ( s ) H ( s ) = A K v r(t)=A\cdot t e_{ssv}=\underset{s\rightarrow0}{\lim}s\Phi_e(s)R(s)=\underset{s\rightarrow0}{\lim}s\cdot\frac{A}{s^2}\cdot\frac{1}{1+G_1(s)H(s)}=\frac{A}{\underset{s\rightarrow0}{\lim}sG_1(s)H(s)}=\frac{A}{K_v} r(t)=Atessv=s0limsΦe(s)R(s)=s0limss2A1+G1(s)H(s)1=s0limsG1(s)H(s)A=KvA

r ( t ) = A 2 ⋅ t 2 e s s a = lim ⁡ s → 0 s Φ e ( s ) R ( s ) = lim ⁡ s → 0 s ⋅ A s 3 ⋅ 1 1 + G 1 ( s ) H ( s ) = A lim ⁡ s → 0 s 2 G 1 ( s ) H ( s ) = A K a r(t)=\frac{A}{2}\cdot t^2 e_{ssa}=\underset{s\rightarrow0}{\lim}s\Phi_e(s)R(s)=\underset{s\rightarrow0}{\lim}s\cdot\frac{A}{s^3}\cdot\frac{1}{1+G_1(s)H(s)}=\frac{A}{\underset{s\rightarrow0}{\lim}s^2G_1(s)H(s)}=\frac{A}{K_a} r(t)=2At2essa=s0limsΦe(s)R(s)=s0limss3A1+G1(s)H(s)1=s0lims2G1(s)H(s)A=KaA

其中,时域分析 K p K_p Kp是静态位置误差系数; K v K_v Kv是静态速度误差系数; K a K_a Ka是静态加速度误差系数。


本节完

人一旦受到责任感的驱使,就能创造出奇迹来。


喜欢我的分享,记得留下足迹!😐

这篇关于0008-【PID学习笔记 8 】控制系统的分析方法的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/471831

相关文章

HarmonyOS学习(七)——UI(五)常用布局总结

自适应布局 1.1、线性布局(LinearLayout) 通过线性容器Row和Column实现线性布局。Column容器内的子组件按照垂直方向排列,Row组件中的子组件按照水平方向排列。 属性说明space通过space参数设置主轴上子组件的间距,达到各子组件在排列上的等间距效果alignItems设置子组件在交叉轴上的对齐方式,且在各类尺寸屏幕上表现一致,其中交叉轴为垂直时,取值为Vert

Ilya-AI分享的他在OpenAI学习到的15个提示工程技巧

Ilya(不是本人,claude AI)在社交媒体上分享了他在OpenAI学习到的15个Prompt撰写技巧。 以下是详细的内容: 提示精确化:在编写提示时,力求表达清晰准确。清楚地阐述任务需求和概念定义至关重要。例:不用"分析文本",而用"判断这段话的情感倾向:积极、消极还是中性"。 快速迭代:善于快速连续调整提示。熟练的提示工程师能够灵活地进行多轮优化。例:从"总结文章"到"用

【前端学习】AntV G6-08 深入图形与图形分组、自定义节点、节点动画(下)

【课程链接】 AntV G6:深入图形与图形分组、自定义节点、节点动画(下)_哔哩哔哩_bilibili 本章十吾老师讲解了一个复杂的自定义节点中,应该怎样去计算和绘制图形,如何给一个图形制作不间断的动画,以及在鼠标事件之后产生动画。(有点难,需要好好理解) <!DOCTYPE html><html><head><meta charset="UTF-8"><title>06

学习hash总结

2014/1/29/   最近刚开始学hash,名字很陌生,但是hash的思想却很熟悉,以前早就做过此类的题,但是不知道这就是hash思想而已,说白了hash就是一个映射,往往灵活利用数组的下标来实现算法,hash的作用:1、判重;2、统计次数;

零基础学习Redis(10) -- zset类型命令使用

zset是有序集合,内部除了存储元素外,还会存储一个score,存储在zset中的元素会按照score的大小升序排列,不同元素的score可以重复,score相同的元素会按照元素的字典序排列。 1. zset常用命令 1.1 zadd  zadd key [NX | XX] [GT | LT]   [CH] [INCR] score member [score member ...]

【机器学习】高斯过程的基本概念和应用领域以及在python中的实例

引言 高斯过程(Gaussian Process,简称GP)是一种概率模型,用于描述一组随机变量的联合概率分布,其中任何一个有限维度的子集都具有高斯分布 文章目录 引言一、高斯过程1.1 基本定义1.1.1 随机过程1.1.2 高斯分布 1.2 高斯过程的特性1.2.1 联合高斯性1.2.2 均值函数1.2.3 协方差函数(或核函数) 1.3 核函数1.4 高斯过程回归(Gauss

【学习笔记】 陈强-机器学习-Python-Ch15 人工神经网络(1)sklearn

系列文章目录 监督学习:参数方法 【学习笔记】 陈强-机器学习-Python-Ch4 线性回归 【学习笔记】 陈强-机器学习-Python-Ch5 逻辑回归 【课后题练习】 陈强-机器学习-Python-Ch5 逻辑回归(SAheart.csv) 【学习笔记】 陈强-机器学习-Python-Ch6 多项逻辑回归 【学习笔记 及 课后题练习】 陈强-机器学习-Python-Ch7 判别分析 【学

系统架构师考试学习笔记第三篇——架构设计高级知识(20)通信系统架构设计理论与实践

本章知识考点:         第20课时主要学习通信系统架构设计的理论和工作中的实践。根据新版考试大纲,本课时知识点会涉及案例分析题(25分),而在历年考试中,案例题对该部分内容的考查并不多,虽在综合知识选择题目中经常考查,但分值也不高。本课时内容侧重于对知识点的记忆和理解,按照以往的出题规律,通信系统架构设计基础知识点多来源于教材内的基础网络设备、网络架构和教材外最新时事热点技术。本课时知识

线性代数|机器学习-P36在图中找聚类

文章目录 1. 常见图结构2. 谱聚类 感觉后面几节课的内容跨越太大,需要补充太多的知识点,教授讲得内容跨越较大,一般一节课的内容是书本上的一章节内容,所以看视频比较吃力,需要先预习课本内容后才能够很好的理解教授讲解的知识点。 1. 常见图结构 假设我们有如下图结构: Adjacency Matrix:行和列表示的是节点的位置,A[i,j]表示的第 i 个节点和第 j 个

Node.js学习记录(二)

目录 一、express 1、初识express 2、安装express 3、创建并启动web服务器 4、监听 GET&POST 请求、响应内容给客户端 5、获取URL中携带的查询参数 6、获取URL中动态参数 7、静态资源托管 二、工具nodemon 三、express路由 1、express中路由 2、路由的匹配 3、路由模块化 4、路由模块添加前缀 四、中间件