转:S3C2410 bootloader ----VIVI阅读笔记

2023-12-08 15:58

本文主要是介绍转:S3C2410 bootloader ----VIVI阅读笔记,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

建议读一读《嵌入式系统Boot Loader技术内幕》(詹荣开著),google一下就会找到一片。什么是Bootloader就不再这里废话了,看看上面的文章就明了了。 Bootloader有很多种,如本文将要阅读的vivi,除此之外还有uboot,redboot,lilo等等。Vivi 是韩国mizi公司专门为三星s3c2410芯片设计的Bootloader。
先来看看vivi的源码树:
vivi-+-arch-+-s3c2410
|-Documentation
|-drivers-+-serial
|           ‘-mtd-+-maps
|                  |-nor
|                  ‘-nand
|-include-+-platform
|           |-mtd
|           ‘-proc
|-init
|-lib-+-priv_data
|-scripts-+-lxdialog
|-test
|-util
可以google一下,搜到源码vivi.tar.gz。
前面提到的文件已经系统的分析了bootloader的,这里就按源代码来具体说事。vivi也可以分为2个阶段,阶段1的代码在arch/s3c2410/head.S中,阶段2的代码从init/main.c的main函数开始。

阶段1

阶段1从程序arch/s3c2410/head.S开始,按照head.S的代码执行顺序,一次完成了下面几个任务:
1、关WATCH DOG (disable watch dog timer)
上电后,WATCH DOG默认是开着的
2、禁止所有中断 (disable all interrupts)
vivi中不会用到中断,中断是系统的事,bootloader可不能去干这事的(不过这段代码实在多余,上电后中断默认是关闭的)
3、初始化系统时钟(initialise system clocks)
启动MPLL,FCLK=200MHz,HCLK=100MHz,PCLK=50MHz,“CPU bus mode”改为“Asynchronous bus mode”。
4、初始化内存控制寄存器(memsetup)
S3c2410共有15个寄存器,在此开始初始化13个寄存器。
5、检查是否从掉电模式唤醒(Check if this is a wake-up from sleep)
若是,则调用WakeupStart函数进行处理。
6、点亮所有LED (All LED on)
点一下灯,通知外面的同志,告诉他们有情况发生。
7、初始化UART0 (set GPIO for UART & InitUART)
a.设置GPIO,选择UART0使用的引脚
b.初始化UART0,设置工作方式(使用FIFO)、波特率115200 8N1、无流控等。这可是使用串口与s3c2410通信的条件啊,在终端也要如此设置。
8、跳到内存测试函数(simple memory test to find some DRAM flaults)
当然要定义了CONFIG_BOOTUP_MEMTEST这个参数才会跳到内存测试。
9、如果定义了以Nand flash方式启动(#ifdef CONFIG_S3C2410_NAND_BOOT),则此时要将vivi所有代码(包括阶段1和阶段2)从Nand flash复制到SDRAM中(因为在Nand flash中是不能执行程序的,它只能做为程序和数据的存储器,而Nor flash可就不同了,Nor flash可以执行程序,但贵是它发展得瓶颈):
a.设置nand flash控制寄存器
b.设置堆栈指针
c.设置即将调用的函数nand_read_ll的参数:r0=目的地址(SDRAM的地址),r1=源地址(nand flash的地址),r2=复制的长度(以字节为单位)
d.调用nand_read_ll进行复制
  10、跳到bootloader的阶段2运行,亦即调用init/main.c中的main函数(get read to call C functions)
a.重新设置堆栈
b.设置main函数的参数
c.调用main函数
head.S有900多行,都是些arm汇编,看的云山雾罩,汇编看来是忘的差不多了,所以这部分代码也看的相当糙,只知道大概在干什么,至于个中缘由就不是很了解。先学学arm汇编再回来看。

阶段2

从init/main.c中的main函数开始,终于步入C语言的世界了。Main函数总共有8步(8 steps),先看看源代码:
int main(int argc, char *argv[])
{
        int ret;
       
/*
        * Step 1:
        */
        putstr("/r/n");
        putstr(vivi_banner);    //vivi_banner是vivi执行开始的显示信息,vivi_banner在文件version.c中定义
        reset_handler();

        /*
         * Step 2:
         */
        ret = board_init();
        if (ret) {
                putstr("Failed a board_init() procedure/r/n");
                error();
        }

        /*
         * Step 3:
         */
        mem_map_init();
        mmu_init();
        putstr("Succeed memory mapping./r/n");

        /*
         * Now, vivi is running on the ram. MMU is enabled.
         * Step 4:
     */
        /* initialize the heap area*/
        ret = heap_init();
        if (ret) {
                putstr("Failed initailizing heap region/r/n");
                error();
        }

        /* Step 5:
         * MTD
         */
        ret = mtd_dev_init();

        /* Step 6:
         */
        init_priv_data();

        /* Step 7:
*/
        misc();
        init_builtin_cmds();

        /* Step 8:
         */
        boot_or_vivi();
        return 0;
}
下面按照上面的步骤逐步来分析一下。
1、Step 1:reset_handler()
reset_handler用于将内存清零,代码在lib/reset_handle.c中。
1  void
2  reset_handler(void)
3  {
4      int pressed;
5      pressed = is_pressed_pw_btn();  /*判断是硬件复位还是软件复位*/
6      if (pressed == PWBT_PRESS_LEVEL) {
7          DPRINTK("HARD RESET/r/n");
8          hard_reset_handle();        /*调用clear_mem对SDRAM清0*/
9      } else {
10         DPRINTK("SOFT RESET/r/n");
11         soft_reset_handle();        /*此函数为空*/
12     }
13  }
    在上电后,reset_handler调用第8行的hard_reset_handle(),此函数在lib/reset_handle.c中:
[main(int argc, char *argv[]) -> reset_handler() -> hard_reset_handle()]
1  static void
2  hard_reset_handle(void)
3  {
4  #if 0
5      clear_mem((unsigned long)(DRAM_BASE + VIVI_RAM_ABS_POS), /
6      (unsigned long)(DRAM_SIZE - VIVI_RAM_ABS_POS));
7  #endif
/*lib/memory.c,将起始地址为USER_RAM_BASE,长度为USER_RAM_SIZE的内存清0*/
8   clear_mem((unsigned long)USER_RAM_BASE, (unsigned long) USER_RAM_SIZE);
9  }
先写到这儿吧。
(未完待续)


S3C2410 bootloader ----VIVI阅读笔记2(续笔记1)

2、Step 2:board_init()    
board_init调用2个函数用于初始化定时器和设置各GPIO引脚功能,代码在arch/s3c2410/smdk.c中:
[main(int argc, char *argv[]) > board_init()]
1  int board_init(void)
2  {
3      init_time();  /*arch/s3c2410/proc.c*/
4      set_gpios();  /*arch/s3c2410/smdk.c */
5      return 0;
6  }
init_time() 这个函数对寄存器进行了简单的操作:
void init_time(void)
{
        TCFG0 = (TCFG0_DZONE(0) | TCFG0_PRE1(15) | TCFG0_PRE0(0));
        /*s3c2410 data sheet P298*/
        /*TCFG0 = 0 | 0xf00 | 0 */
}
寄存器TCFG0由三部分组成,prescaler0,prescaler1,deadzone和reserve四部分,前三部分分别对应 TCFG0_PRE0、TCFG0_PRE1、TCFG0_DZONE,TCFG0_PRE0(0)实际值为0x00,TCFG0_PRE1(15)实际值为0x0f00,而TCFG0_DZONE(0)实际值为 0x000000。实际中,vivi并未使用定时器,这个函数就可以忽略。set_gpios()用于选择GPA至GPH端口各引脚的功能及是否使用各引脚的内部上拉电阻,并设置外部中断源寄存器EXTINT0-2(vivi中未使用外部中断)。
1        void set_gpios(void)
2        {
3                GPACON  = vGPACON;
4                GPBCON  = vGPBCON;
5                GPBUP   = vGPBUP;
6                GPCCON  = vGPCCON;
7                GPCUP   = vGPCUP;
8                GPDCON  = vGPDCON;
9                GPDUP   = vGPDUP;
10                GPECON  = vGPECON;
11                GPEUP   = vGPEUP;
12                GPFCON  = vGPFCON;
13                GPFUP   = vGPFUP;
14                GPGCON  = vGPGCON;
15                GPGUP   = vGPGUP;
16                GPHCON  = vGPHCON;
17                GPHUP   = vGPHUP;
18                EXTINT0 = vEXTINT0;
19                EXTINT1 = vEXTINT1;
20                EXTINT2 = vEXTINT2;
21        }
        以第三行为例,vGPACON的值为0x007fffff,查找s3c2410用户手册可知,该参数将GPACON的23位全部置1。各位功能需察看s3c2410用户手册

3、Step 3:建立页表和启动MMU
          mem_map_init();
mmu_init();

mem_map_init函数用于建立页表,vivi使用段式页表,只需要一级页表。它调用3个函数,代码在arch/s3c2410/mmu.c中:
[main(int argc, char *argv[]) > mem_map_init(void)]
1        void mem_map_init(void)
2        {
3        #ifdef CONFIG_S3C2410_NAND_BOOT        
/*CONFIG_S3C2410_NAND_BOOT = y ,在文件include/autoconf.h中定义*/
4                mem_map_nand_boot();      
/* 最终调用mem_mepping_linear, 建立页表 */
5        #else
6                mem_map_nor();
7        #endif
8                cache_clean_invalidate();/* 清空cache,使无效cache */ 
9                tlb_invalidate();        /* 使无效快表TLB */
10        }
第9、10行的两个函数可以不用管它,他们做的事情在下面的mmu_init函数里又重复了一遍。对于本开发板,在.config中定义了 CONFIG_S3C2410_NAND_BOOT。mem_map_nand_boot()函数调用mem_mapping_linear()函数来最终完成建立页表的工作。页表存放在SDRAM物理地址0x33dfc000开始处,共16K:一个页表项4字节,共有4096个页表项;每个页表项对应 1M地址空间,共4G。mem_map_init先将4G虚拟地址映射到相同的物理地址上,NCNB(不使用cache,不使用write buffer)——这样,对寄存器的操作跟未启动MMU时是一样的;再将SDRAM对应的64M空间的页表项修改为使用cache。 mem_mapping_linear函数的代码在arch/s3c2410/mmu.c中:
[main(int argc, char *argv[]) > mem_map_init(void) > mem_map_nand_boot( ) > mem_mapping_linear(void)]
1  static inline void mem_mapping_linear(void)
2  { 
3      unsigned long pageoffset, sectionNumber;
4            putstr_hex("MMU table base address = 0x", (unsigned long)
mmu_tlb_base);
5       /* 4G 虚拟地址映射到相同的物理地址. not cacacheable, not bufferable */
6       /* mmu_tlb_base = 0x33dfc000*/
7       for (sectionNumber = 0; sectionNumber < 4096; sectionNumber++) {
8               pageoffset = (sectionNumber << 20);
9                 *(mmu_tlb_base + (pageoffset >> 20)) = pageoffset |
            MMU_SECDESC;
10      }
             
11      /* make dram cacheable */
12      /* SDRAM物理地址0x3000000-0x33ffffff,
13          DRAM_BASE=0x30000000,DRAM_SIZE=64M
14      */
15      for (pageoffset = DRAM_BASE; pageoffset < (DRAM_BASE+DRAM_SIZE); /
16          pageoffset += SZ_1M) {
17          //DPRINTK(3, "Make DRAM section cacheable: 0x%08lx/n",             pageoffset);
18          *(mmu_tlb_base + (pageoffset >> 20)) = /
pageoffset | MMU_SECDESC | MMU_CACHEABLE;
19      }
20 }
mmu_init()函数用于启动MMU,它直接调用arm920_setup()函数。arm920_setup()的代码在arch/s3c2410/mmu.c中:
[main(int argc, char *argv[]) > mmu_init( ) > arm920_setup( )]
1  static inline void arm920_setup(void)
2  {
3                  unsigned long ttb = MMU_TABLE_BASE;
/* MMU_TABLE_BASE = 0x33dfc000 */
4  __asm__(
5       /* Invalidate caches */
6       "mov    r0, #0/n"
7       "mcr    p15, 0, r0, c7, c7, 0/n"    /* invalidate I,D caches on v4 */
8       "mcr    p15, 0, r0, c7, c10, 4/n"   /* drain write buffer on v4 */
9       "mcr    p15, 0, r0, c8, c7, 0/n"    /* invalidate I,D TLBs on v4 */
           10      /* Load page table pointer */
11      "mov    r4, %0/n"
12      "mcr    p15, 0, r4, c2, c0, 0/n"    /* load page table pointer */
13      /* Write domain id (cp15_r3) */
          14      "mvn    r0, #0/n"    /* Domains 0b01 = client, 0b11=Manager*/
          15      "mcr    p15, 0, r0, c3, c0, 0/n"
/* load domain access register,write domain 15:0, 用户手册P548(access permissions)*/
16      /* Set control register v4 */
17      "mrc    p15, 0, r0, c1, c0, 0/n"    /* get control register v4 */
            /*数据手册P545:read control register */
18      /* Clear out 'unwanted' bits (then put them in if we need them) */
19      /* ..VI ..RS B... .CAM */   /*这些位的含义在数据手册P546*/
20      "bic r0, r0, #0x3000/n"  /* ..11 .... .... .... */
            /*I(bit[12])=0 = Instruction cache disabled*/
21      /*V[bit[13]](Base location of exception registers)=0 = Low addresses = 0x0000 0000*/
22      "bic r0, r0, #0x0300/n"      /* .... ..11 .... .... */
             
23      /*R(ROM protection bit[9])=0*/
                   /*S(System protection bit[8])=0*/
                   /*由于TTB中AP=0b11(line141),所以RS位不使用(P579)*/
24      "bic r0, r0, #0x0087/n"      /* 0x0000000010000111 */
                /*M(bit[0])=0 = MMU disabled*/
                /*A(bit[1])=0 =Data address alignment fault checking disable*/
                /*C(bit[2])=0 = Data cache disabled*/
                /*B(bit[7])=0= Little-endian operation*/
25      /* Turn on what we want */
26      /* Fault checking enabled */
27      "orr r0, r0, #0x0002/n"      /* .... .... .... ..10 */
            /*A(bit[1])=1 = Data address alignment fault checking enable*/
28                  #ifdef CONFIG_CPU_D_CACHE_ON     /*is not set*/
29      "orr    r0, r0, #0x0004/n"      /* .... .... .... .100 */
            /*C(bit[2])=1 = Data cache enabled*/
30 #endif 
31 #ifdef CONFIG_CPU_I_CACHE_ON     /*is not set*/
32      "orr    r0, r0, #0x1000/n"  /* ...1 .... .... .... */
            /*I(bit[12])=1 = Instruction cache enabled*/
33 #endif 
              
34          /* MMU enabled */
35                "orr    r0, r0, #0x0001/n"      /* .... .... .... ...1 */
            /*M(bit[0])=1 = MMU enabled*/
36                "mcr    p15, 0, r0, c1, c0, 0/n"    /* write control register */
            /*数据手册P545*/
37                : /* no outputs */
38                : "r" (ttb) );
39 }

[未完]


S3C2410 bootloader ----VIVI阅读笔记3

4、Step 4:heap_init()    
第4步调用了heap_init(void)函数,并返回值。该值是函数heap_init()调用的mmalloc_init()函数的返回值。其实,这步就是申请一块内存区域。
[lib/heap.c->heap_init(void)]
1        int heap_init(void)
2        {
3                return mmalloc_init((unsigned char *)(HEAP_BASE), HEAP_SIZE);      
4        }
内存动态分配函数mmalloc就是从heap(堆)中划出一块空闲内存。相应的mfree函数则将动态分配的某块内存释放回heap中。
heap_init函数在SDRAM中指定了一块1M大小的内存作为heap(起始地址HEAP_BASE = 0x33e00000),并在heap的开头定义了一个数据结构blockhead。事实上,heap就是使用一系列的blockhead数据结构来描述和操作的。每个blockhead数据结构对应着一块heap内存,假设一个blockhead数据结构的存放位置为A,则它对应的可分配内存地址为“A + sizeof(blockhead)”到“A + sizeof(blockhead) + size - 1”。blockhead数据结构在lib/heap.c中定义:
1  typedef struct blockhead_t {
2       int32 signature;     //固定为BLOCKHEAD_SIGNATURE
3       bool allocated;      //此区域是否已经分配出去:0-N,1-Y
4       unsigned long size;  //此区域大小
5       struct blockhead_t *next;   //链表指针
6       struct blockhead_t *prev;   //链表指针
7  } blockhead;
现在来看看heap是如何运作的(如果您不关心heap实现的细节,这段可以跳过)。vivi对heap的操作比较简单,vivi中有一个全局变量 static blockhead *gHeapBase,它是heap的链表头指针,通过它可以遍历所有blockhead数据结构。假设需要动态申请一块sizeA大小的内存,则 mmalloc函数从gHeapBase开始搜索blockhead数据结构,如果发现某个blockhead满足:
(1) allocated = 0  //表示未分配
(2) size > sizeA,则找到了合适的blockhead,
满足上述条件后,进行如下操作:
a.allocated设为1
b.如果size – sizeA > sizeof(blockhead),则将剩下的内存组织成一个新的blockhead,放入链表中
c.返回分配的内存的首地址释放内存的操作更简单,直接将要释放的内存对应的blockhead数据结构的allocated设为0即可。
heap_init函数直接调用mmalloc_init函数进行初始化,此函数代码在lib/heap.c中,比较简单,初始化gHeapBase即可:
[main(int argc, char *argv[]) > heap_init(void) > mmalloc_init(unsigned char *heap, unsigned long size)]
1         static inline int mmalloc_init(unsigned char *heap, unsigned long size)
2         {
3      if (gHeapBase != NULL) return -1;
    4    DPRINTK("malloc_init(): initialize heap area at 0x%08lx, size = 0x%08lx/n", heap, size);
5       gHeapBase = (blockhead *)(heap);
6       gHeapBase->allocated=FALSE;
7       gHeapBase->signature=BLOCKHEAD_SIGNATURE;
8       gHeapBase->next=NULL;
9       gHeapBase->prev=NULL;
10      gHeapBase->size = size - sizeof(blockhead);
11      return 0;
12         }
static blockhead *gHeapBase = NULL; 这个就是上面称赞的全局变量了,定义在lib/heap.c中。上面就是个链表操作,数据结构,看来搞这个也得好好学数据结构啊,不然内存搞的溢出、浪费可就哭都来不及了。

5、Step 5:mtd_dev_init()  
所谓MTD(Memory Technology Device)相关的技术。在linux系统中,我们通常会用到不同的存储设备,特别是FLASH设备。为了在使用新的存储设备时,我们能更简便地提供它的驱动程序,在上层应用和硬件驱动的中间,抽象出MTD设备层。驱动层不必关心存储的数据格式如何,比如是FAT32、ETX2还是FFS2或其它。它仅仅提供一些简单的接口,比如读写、擦除及查询。如何组织数据,则是上层应用的事情。MTD层将驱动层提供的函数封装起来,向上层提供统一的接口。这样,上层即可专注于文件系统的实现,而不必关心存储设备的具体操作。这段乱七八糟的话也许比较让人晕,也可以这样理解在设备驱动(此处指存储设备)和上层应用之间还存在着一层,共三层,这个中间层就是MTD技术的产物。通常可以将它视为驱动的一部分,叫做上层驱动,而那些实现设备的读、写操作的驱动称为下层驱动,上层驱动将下层驱动封装,并且留给其上层应用一些更加容易简单的接口。
在我们即将看到的代码中,使用mtd_info数据结构表示一个MTD设备,使用nand_chip数据结构表示一个nand flash芯片。在mtd_info结构中,对nand_flash结构作了封装,向上层提供统一的接口。比如,它根据nand_flash提供的 read_data(读一个字节)、read_addr(发送要读的扇区的地址)等函数,构造了一个通用的读函数read,将此函数的指针作为自己的一个成员。而上层要读写flash时,执行mtd_info中的read、write函数即可。
mtd_dev_init()用来扫描所使用的NAND Flash的型号,构造MTD设备,即构造一个mtd_info的数据结构。对于S3C2410来说,它直接调用mtd_init(),mtd_init 又调用smc_init(),此函数在drivers/mtd/maps/s3c2410_flash.c中:
[main(int argc,char *argv[])>mtd_dev_init()>mtd_init()]
1        int mtd_init(void)
2  {
3  int ret;

4  #ifdef CONFIG_MTD_CFI                /*is not set*/
5  ret = cfi_init();
6        #endif
7        #ifdef CONFIG_MTD_SMC9                /* =y */
8                ret = smc_init();
9        #endif
10        #ifdef CONFIG_S3C2410_AMD_BOOT        /*is not set*/
11                ret = amd_init();
12        #endif

13        if (ret) {
14                mymtd = NULL;
15                return ret;
16                 }
17        return 0;
18        }
显而易见,该函数应取第二项,这项在autoconf.h中定义了。
[main(int argc, char *argv[]) > mtd_dev_init() > mtd_init() > smc_init()]
1 static int
2 smc_init(void)
3 {
/*struct mtd_info *mymtd,数据类型在include/mtd/mtd.h*/
            /*strcut nand_chip在include/mtd/nand.h中定义*/
4       struct nand_chip *this;
5       u_int16_t nfconf;
            /* Allocate memory for MTD device structure and private data */
6       mymtd = mmalloc(sizeof(struct mtd_info) + sizeof(struct nand_chip));
7       if (!mymtd) {
8          printk("Unable to allocate S3C2410 NAND MTD device structure./n");
9          return -ENOMEM;
10      }
            /* Get pointer to private data */
11      this = (struct nand_chip *)(&mymtd[1]);
            /* Initialize structures */
12      memset((char *)mymtd, 0, sizeof(struct mtd_info));
13      memset((char *)this, 0, sizeof(struct nand_chip));
/* Link the private data with the MTD structure */
14      mymtd->priv = this;
/* set NAND Flash  controller */
15      nfconf = NFCONF;
/* NAND Flash controller enable */
16      nfconf |= NFCONF_FCTRL_EN;
/* Set flash memory timing */
17      nfconf &= ~NFCONF_TWRPH1;   /* 0x0 */
    18      nfconf |= NFCONF_TWRPH0_3;  /* 0x3 */
    19      nfconf &= ~NFCONF_TACLS; /* 0x0 */
             
    20      NFCONF = nfconf;
             
            /* Set address of NAND IO lines */
    21      this->hwcontrol = smc_hwcontrol;
    22      this->write_cmd = write_cmd;
23      this->write_addr = write_addr;
24      this->read_data = read_data;
25      this->write_data = write_data;
26      this->wait_for_ready = wait_for_ready;
             
/* Chip Enable -> RESET -> Wait for Ready -> Chip Disable */
27      this->hwcontrol(NAND_CTL_SETNCE);
28      this->write_cmd(NAND_CMD_RESET);
29      this->wait_for_ready();
30      this->hwcontrol(NAND_CTL_CLRNCE);
             
31      smc_insert(this);
             
32      return 0;
33 }
6-14行构造了一个mtd_info结构和nand_flash结构,前者对应MTD设备,后者对应nand flash芯片(如果您用的是其他类型的存储器件,比如nor flash,这里的nand_flash结构应该换为其他类型的数据结构)。MTD设备是具体存储器件的抽象,那么在这些代码中这种关系如何体现呢——第 14行的代码把两者连结在一起了。事实上,mtd_info结构中各成员的实现(比如read、write函数),正是由priv变量所指向的 nand_flash的各类操作函数(比如read_addr、read_data等)来实现的。
15-20行是初始化S3C2410上的NAND FLASH控制器。前面分配的nand_flash结构还是空的,现在当然就是填满它的各类成员了,这正是21-26行做的事情。27-30行对这块 nand flash作了一下复位操作。最后,也是最复杂的部分,根据刚才填充的nand_flash结构,构造mtd_info结构,这由31行的 smc_insert函数调用smc_scan完成。

这才是VIVI启动的第5步,还有三步就完成了启动了,同时我的这篇阅读笔记也就OVER了。

这篇关于转:S3C2410 bootloader ----VIVI阅读笔记的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/470457

相关文章

JAVA智听未来一站式有声阅读平台听书系统小程序源码

智听未来,一站式有声阅读平台听书系统 🌟&nbsp;开篇:遇见未来,从“智听”开始 在这个快节奏的时代,你是否渴望在忙碌的间隙,找到一片属于自己的宁静角落?是否梦想着能随时随地,沉浸在知识的海洋,或是故事的奇幻世界里?今天,就让我带你一起探索“智听未来”——这一站式有声阅读平台听书系统,它正悄悄改变着我们的阅读方式,让未来触手可及! 📚&nbsp;第一站:海量资源,应有尽有 走进“智听

【学习笔记】 陈强-机器学习-Python-Ch15 人工神经网络(1)sklearn

系列文章目录 监督学习:参数方法 【学习笔记】 陈强-机器学习-Python-Ch4 线性回归 【学习笔记】 陈强-机器学习-Python-Ch5 逻辑回归 【课后题练习】 陈强-机器学习-Python-Ch5 逻辑回归(SAheart.csv) 【学习笔记】 陈强-机器学习-Python-Ch6 多项逻辑回归 【学习笔记 及 课后题练习】 陈强-机器学习-Python-Ch7 判别分析 【学

系统架构师考试学习笔记第三篇——架构设计高级知识(20)通信系统架构设计理论与实践

本章知识考点:         第20课时主要学习通信系统架构设计的理论和工作中的实践。根据新版考试大纲,本课时知识点会涉及案例分析题(25分),而在历年考试中,案例题对该部分内容的考查并不多,虽在综合知识选择题目中经常考查,但分值也不高。本课时内容侧重于对知识点的记忆和理解,按照以往的出题规律,通信系统架构设计基础知识点多来源于教材内的基础网络设备、网络架构和教材外最新时事热点技术。本课时知识

论文阅读笔记: Segment Anything

文章目录 Segment Anything摘要引言任务模型数据引擎数据集负责任的人工智能 Segment Anything Model图像编码器提示编码器mask解码器解决歧义损失和训练 Segment Anything 论文地址: https://arxiv.org/abs/2304.02643 代码地址:https://github.com/facebookresear

数学建模笔记—— 非线性规划

数学建模笔记—— 非线性规划 非线性规划1. 模型原理1.1 非线性规划的标准型1.2 非线性规划求解的Matlab函数 2. 典型例题3. matlab代码求解3.1 例1 一个简单示例3.2 例2 选址问题1. 第一问 线性规划2. 第二问 非线性规划 非线性规划 非线性规划是一种求解目标函数或约束条件中有一个或几个非线性函数的最优化问题的方法。运筹学的一个重要分支。2

【C++学习笔记 20】C++中的智能指针

智能指针的功能 在上一篇笔记提到了在栈和堆上创建变量的区别,使用new关键字创建变量时,需要搭配delete关键字销毁变量。而智能指针的作用就是调用new分配内存时,不必自己去调用delete,甚至不用调用new。 智能指针实际上就是对原始指针的包装。 unique_ptr 最简单的智能指针,是一种作用域指针,意思是当指针超出该作用域时,会自动调用delete。它名为unique的原因是这个

查看提交历史 —— Git 学习笔记 11

查看提交历史 查看提交历史 不带任何选项的git log-p选项--stat 选项--pretty=oneline选项--pretty=format选项git log常用选项列表参考资料 在提交了若干更新,又或者克隆了某个项目之后,你也许想回顾下提交历史。 完成这个任务最简单而又有效的 工具是 git log 命令。 接下来的例子会用一个用于演示的 simplegit

记录每次更新到仓库 —— Git 学习笔记 10

记录每次更新到仓库 文章目录 文件的状态三个区域检查当前文件状态跟踪新文件取消跟踪(un-tracking)文件重新跟踪(re-tracking)文件暂存已修改文件忽略某些文件查看已暂存和未暂存的修改提交更新跳过暂存区删除文件移动文件参考资料 咱们接着很多天以前的 取得Git仓库 这篇文章继续说。 文件的状态 不管是通过哪种方法,现在我们已经有了一个仓库,并从这个仓

忽略某些文件 —— Git 学习笔记 05

忽略某些文件 忽略某些文件 通过.gitignore文件其他规则源如何选择规则源参考资料 对于某些文件,我们不希望把它们纳入 Git 的管理,也不希望它们总出现在未跟踪文件列表。通常它们都是些自动生成的文件,比如日志文件、编译过程中创建的临时文件等。 通过.gitignore文件 假设我们要忽略 lib.a 文件,那我们可以在 lib.a 所在目录下创建一个名为 .gi

取得 Git 仓库 —— Git 学习笔记 04

取得 Git 仓库 —— Git 学习笔记 04 我认为, Git 的学习分为两大块:一是工作区、索引、本地版本库之间的交互;二是本地版本库和远程版本库之间的交互。第一块是基础,第二块是难点。 下面,我们就围绕着第一部分内容来学习,先不考虑远程仓库,只考虑本地仓库。 怎样取得项目的 Git 仓库? 有两种取得 Git 项目仓库的方法。第一种是在本地创建一个新的仓库,第二种是把其他地方的某个