C语言之动态内存管理(malloc calloc realloc)

2023-12-08 15:52

本文主要是介绍C语言之动态内存管理(malloc calloc realloc),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

C语言之动态内存管理

文章目录

  • C语言之动态内存管理
    • 1. 为什么要有动态内存管理
    • 2. malloc 和 free
      • 2.1 malloc
      • 2.2 free
      • 2.3 例子
    • 3. calloc 和 realloc
      • 3.1 calloc
      • 3.2 realloc
    • 4. 常见的动态内存错误
      • 4.1 对NULL指针的解引⽤操作
      • 4.2 对动态开辟空间的越界访问
      • 4.3 对⾮动态开辟内存使⽤free释放
      • 4.4 使⽤free释放⼀块动态开辟内存的⼀部分
      • 4.5 对同⼀块动态内存多次释放
      • 4.6 动态开辟内存忘记释放(内存泄漏)
    • 5. 总结

1. 为什么要有动态内存管理

我们已经掌握的内存开辟⽅式有:

#include <stdio.h>int main()
{int val = 20;int arr[10] = { 0 };return 0;
}

上述的开辟空间的⽅式有两个特点
• 空间开辟大小是固定的

•数组在申明的时候,必须指定数组的⻓度,数组空间⼀旦确定了⼤⼩不能调整

所以C语⾔引⼊了动态内存开辟,让程序员⾃⼰可以申请和释放空间

2. malloc 和 free

mallocfree函数都是在stdlib.h头文件中声明的

2.1 malloc

C语言中提供了一个动态内存开辟的函数:

void* malloc (size_t size);

其中size为要开辟的内存空间的大小,单位为字节

这个函数向内存申请⼀块连续可⽤的空间,并返回指向这块空间的指针

•如果开辟成功,则返回一个指向开辟好的内存空间的指针
•如果开辟失败,则返回一个NULL指针
•返回类型为void *,因为malloc函数不知道要开辟什么类型的内存空间,只知道要开辟的大小
•如果参数为0,malloc函数的行为标准是未定义的,取决于编译器

2.2 free

C语言还提供了一个的函数,专门用来做动态内存的释放和回收的:

void free (void* ptr);

ptr为要释放内存空间的指针

•如果参数ptr指向的内存空间不是动态开辟的,那么free函数的行为是未定义的
•如果参数ptrNULL,则函数什么都不做

如果不对malloc calloc realloc 开辟的空间进行释放,即使出了作用域也不会销毁,有可能导致内存泄漏

释放的方式
1. free
2. 直到程序结束,由操作系统释放

2.3 例子

#include <stdio.h>
#include <stdlib.h>
#include <string.h>int main()
{int* p = (int*)malloc(10 * sizeof(int)); //开辟40个字节的空间//判断是否为NULL指针if (p == NULL){perror("malloc fail\n"); //perror为错误信息打印return 1;}//使用int i = 0;for (i = 0; i < 10; i++){*(p + i) = i;//*p = i;   //如果使用这种方法,p指针向后走了,在下面打印时,就找不到首元素的地址了//p++;}//打印for (i = 0; i < 10; i++){printf("%d ", *(p + i));}free(p);  //释放p = NULL; //将指针置NULL,如果不置NULL,下面解引用p时,p就是野指针return 0;
}

代码运行结果:>
0 1 2 3 4 5 6 7 8 9

malloc开辟空间时,是不会给空间初始化的,如果直接打印,会打印出随机值

3. calloc 和 realloc

3.1 calloc

C语⾔还提供了⼀个函数叫 calloccalloc 函数也⽤来动态内存分配

void* calloc (size_t num, size_t size);

num为要开辟的元素个数
size为开辟元素的元素大小,单位为字节

calloc为开辟num个大小为size元素的内存空间,并且将内存中每个字节初始化为0
calloc的使用方法和malloc一样,主要区别在于calloc会初始化元素

例子:

#include <stdio.h>
#include <stdlib.h>
#include <string.h>int main()
{int* p = (int*)calloc(10 ,sizeof(int));//判断是否为NULL指针if (p == NULL){perror("calloc fail\n");return 1;}int i = 0;for (i = 0; i < 10; i++){printf("%d ", *(p + i));}return 0;
}

代码运行结果:>
0 0 0 0 0 0 0 0 0 0

3.2 realloc

C语言中有一个函数用来调整动态内存开辟后的大小

void* realloc (void* ptr, size_t size);

ptr为要调整的内存地址
size为调整后的内存大小

realloc函数的出现让动态内存管理更加灵活
• 当我们发现我们使用malloc calloc realloc申请的内存空间不够时,我们可以使用realloc进行扩容

•返回值为调整之后的内存的起始位置(不一定是原内存地址)
•如果开辟失败则返回一个NULL
•如果开辟成功则分以下两个情况:

情况1:原有空间之后有⾜够⼤的空间
情况2:原有空间之后没有⾜够⼤的空间

在这里插入图片描述

情况1:在原有内存后边直接追加空间,原来的空间的数据不变
情况2:原有内存之后的空间不足以最加空间,那么realloc会在堆区中找到一块足够开辟新大小的空间,将旧空间中的数据拷贝到新空间,并且将旧空间释放,同时返回新空间起始位置的地址

realloc的用法除了为开辟的内存进行扩容,也可以和malloc一样

例子:

#include <stdio.h>
#include <stdlib.h>
#include <string.h>int main()
{int* p = (int*)malloc(10 * sizeof(int));//判断是否为NULL指针if (p == NULL){perror("malloc fail\n");return 1;}int* tmp = (int*)realloc(p, 100*sizeof(int));if (tmp != NULL){p = tmp;}else{perror("relloc fail\n");return 1;}//使用//..........free(p);p = NULL;return 0;
}

在这里插入图片描述
这次的运行结果就是情况2(开辟100个字节的大小时,可能会出现),当后面的空间不够时, realloc就会找一块新的空间
在这里插入图片描述
这次只开辟了40个字节的空间,属于情况1,后面的空间足够时, realloc会直接在后面追加空间

4. 常见的动态内存错误

4.1 对NULL指针的解引⽤操作

#include <stdio.h>
#include <stdlib.h>int main()
{int* p = (int*)malloc(40);*p = 20; //如果malloc开辟空间失败,p可能是NULL,此时p为野指针return 0;
}

在VS2022中,编译器会进行提示,我们得对可能出现NULL的情况进行处理
在这里插入图片描述

在使用malloc calloc realloc开辟空间时,最好对返回值进行判断,当不为NULL再使用

4.2 对动态开辟空间的越界访问

#include <stdio.h>
#include <stdlib.h>
#include <string.h>int main()
{int* p = (int*)malloc(40);if (p == NULL){perror("malloc fail\n");return 1;}int i = 0;for (i = 0; i <= 10; i++)  //只有10个元素的空间,却访问了第11个元素,访问越界了{*(p + i) = i;}free(p);p = NULL;return 0;
}

在这里插入图片描述

4.3 对⾮动态开辟内存使⽤free释放

#include <stdio.h>
#include <stdlib.h>int main()
{int a = 10;int* p = &a;free(p);return 0;
}

在这里插入图片描述

当用free释放了不是由malloc calloc realloc开辟的空间时,就会报错

4.4 使⽤free释放⼀块动态开辟内存的⼀部分

#include <stdio.h>
#include <stdlib.h>
#include <string.h>int main()
{int a = 10;int* p = (int*)malloc(40);if (p == NULL){perror("malloc fail\n");return 1;}//使用//......p++;free(p);p = NULL;return 0;
}

在这里插入图片描述
当用free释放了开辟空间的一部分时,就会报错

4.5 对同⼀块动态内存多次释放

#include <stdio.h>
#include <stdlib.h>
#include <string.h>int main()
{int a = 10;int* p = (int*)malloc(40);if (p == NULL){perror("malloc fail\n");return 1;}//使用//......free(p);free(p);p = NULL;return 0;
}

在这里插入图片描述
对一块动态开辟的内存进行多次free释放

在上述代码中如果free释放NULL,则没有问题,因为free的参数为NULL时,则什么都不做

#include <stdio.h>
#include <stdlib.h>
#include <string.h>int main()
{int a = 10;int* p = (int*)malloc(40);if (p == NULL){perror("malloc fail\n");return 1;}//使用//......free(p);p = NULL;free(p);p = NULL;return 0;
}

4.6 动态开辟内存忘记释放(内存泄漏)

#include <stdio.h>
#include <stdlib.h>void test()
{int* p = (int*)malloc(100);if (p != NULL){*p = 20;}
}
int main()
{test();while (1); //死循环,让程序不结束return 0;
}

当动态开辟的内存不释放时,就会一存在,在上述代码中,调用了test函数,开辟了100个字节的空间,同时赋值,出函数时,p被销毁了,但是开辟的空间并没有被销毁,没人可以使用,也没人可以释放,就会导致内存泄漏

5. 总结

一丶
在使用malloc calloc realloc开辟的空间时,要对其进行判断,当不为NULL的再进行使用
二丶
当不使用动态开辟的内存时,将其free释放,同时将指针置NULL,防止可能出现的内存泄露和野指针
三丶
不对不是动态开辟的空间free,不连续对动态开辟的空间free,同时free动态开辟的空间时,要给开辟的起始地址,不能free部分空间

这篇关于C语言之动态内存管理(malloc calloc realloc)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/470451

相关文章

SpringBoot使用minio进行文件管理的流程步骤

《SpringBoot使用minio进行文件管理的流程步骤》MinIO是一个高性能的对象存储系统,兼容AmazonS3API,该软件设计用于处理非结构化数据,如图片、视频、日志文件以及备份数据等,本文... 目录一、拉取minio镜像二、创建配置文件和上传文件的目录三、启动容器四、浏览器登录 minio五、

C语言线程池的常见实现方式详解

《C语言线程池的常见实现方式详解》本文介绍了如何使用C语言实现一个基本的线程池,线程池的实现包括工作线程、任务队列、任务调度、线程池的初始化、任务添加、销毁等步骤,感兴趣的朋友跟随小编一起看看吧... 目录1. 线程池的基本结构2. 线程池的实现步骤3. 线程池的核心数据结构4. 线程池的详细实现4.1 初

IDEA中的Kafka管理神器详解

《IDEA中的Kafka管理神器详解》这款基于IDEA插件实现的Kafka管理工具,能够在本地IDE环境中直接运行,简化了设置流程,为开发者提供了更加紧密集成、高效且直观的Kafka操作体验... 目录免安装:IDEA中的Kafka管理神器!简介安装必要的插件创建 Kafka 连接第一步:创建连接第二步:选

综合安防管理平台LntonAIServer视频监控汇聚抖动检测算法优势

LntonAIServer视频质量诊断功能中的抖动检测是一个专门针对视频稳定性进行分析的功能。抖动通常是指视频帧之间的不必要运动,这种运动可能是由于摄像机的移动、传输中的错误或编解码问题导致的。抖动检测对于确保视频内容的平滑性和观看体验至关重要。 优势 1. 提高图像质量 - 清晰度提升:减少抖动,提高图像的清晰度和细节表现力,使得监控画面更加真实可信。 - 细节增强:在低光条件下,抖

科研绘图系列:R语言扩展物种堆积图(Extended Stacked Barplot)

介绍 R语言的扩展物种堆积图是一种数据可视化工具,它不仅展示了物种的堆积结果,还整合了不同样本分组之间的差异性分析结果。这种图形表示方法能够直观地比较不同物种在各个分组中的显著性差异,为研究者提供了一种有效的数据解读方式。 加载R包 knitr::opts_chunk$set(warning = F, message = F)library(tidyverse)library(phyl

透彻!驯服大型语言模型(LLMs)的五种方法,及具体方法选择思路

引言 随着时间的发展,大型语言模型不再停留在演示阶段而是逐步面向生产系统的应用,随着人们期望的不断增加,目标也发生了巨大的变化。在短短的几个月的时间里,人们对大模型的认识已经从对其zero-shot能力感到惊讶,转变为考虑改进模型质量、提高模型可用性。 「大语言模型(LLMs)其实就是利用高容量的模型架构(例如Transformer)对海量的、多种多样的数据分布进行建模得到,它包含了大量的先验

软考系统规划与管理师考试证书含金量高吗?

2024年软考系统规划与管理师考试报名时间节点: 报名时间:2024年上半年软考将于3月中旬陆续开始报名 考试时间:上半年5月25日到28日,下半年11月9日到12日 分数线:所有科目成绩均须达到45分以上(包括45分)方可通过考试 成绩查询:可在“中国计算机技术职业资格网”上查询软考成绩 出成绩时间:预计在11月左右 证书领取时间:一般在考试成绩公布后3~4个月,各地领取时间有所不同

安全管理体系化的智慧油站开源了。

AI视频监控平台简介 AI视频监控平台是一款功能强大且简单易用的实时算法视频监控系统。它的愿景是最底层打通各大芯片厂商相互间的壁垒,省去繁琐重复的适配流程,实现芯片、算法、应用的全流程组合,从而大大减少企业级应用约95%的开发成本。用户只需在界面上进行简单的操作,就可以实现全视频的接入及布控。摄像头管理模块用于多种终端设备、智能设备的接入及管理。平台支持包括摄像头等终端感知设备接入,为整个平台提

从状态管理到性能优化:全面解析 Android Compose

文章目录 引言一、Android Compose基本概念1.1 什么是Android Compose?1.2 Compose的优势1.3 如何在项目中使用Compose 二、Compose中的状态管理2.1 状态管理的重要性2.2 Compose中的状态和数据流2.3 使用State和MutableState处理状态2.4 通过ViewModel进行状态管理 三、Compose中的列表和滚动

C语言 | Leetcode C语言题解之第393题UTF-8编码验证

题目: 题解: static const int MASK1 = 1 << 7;static const int MASK2 = (1 << 7) + (1 << 6);bool isValid(int num) {return (num & MASK2) == MASK1;}int getBytes(int num) {if ((num & MASK1) == 0) {return