Microbial Genetic Algorithm(微遗传算法)

2023-12-08 10:10

本文主要是介绍Microbial Genetic Algorithm(微遗传算法),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

微生物遗传算法(Microbial Genetic Algorithm) 
这种算法是用来解决遗传算法中的一些问题,当我们在遗传的过程中,我们在利用原始的种群繁衍变异产生新的种群以后,原来的种群就消失了,但是有可能我们在这个过程也将好的个体丢失了,所以有可能变异之后的种群还没有原来的种群好。 
那么所以我就应该在繁衍变异的过程中保留一部分好的基因,这就是Elitism问题。一句话来概括,就是:在袋子里抽两个球,对比两个球的大小,把球大的放回袋子里,把球小的变一下再放回袋子里。 
这里写图片描述 
首先有一个种群,随机选取两个DNA,对比他们的fitness,然后分成好的和坏的:winer、loser,然后winer不做任何改动,loser摄取一些winer的DNAmutate,然后再将两者放回population,这个过程并没有改变winer的DNA,mutate loser的DNA。

import numpy as np
import matplotlib.pyplot as pltDNA_SIZE = 10            # DNA length
POP_SIZE = 20            # population size
CROSS_RATE = 0.6         # mating probability (DNA crossover)
MUTATION_RATE = 0.01     # mutation probability
N_GENERATIONS = 200
X_BOUND = [0, 5]         # x upper and lower boundsdef F(x): return np.sin(10*x)*x + np.cos(2*x)*x     # to find the maximum of this functionclass MGA(object):def __init__(self, DNA_size, DNA_bound, cross_rate, mutation_rate, pop_size):self.DNA_size = DNA_sizeDNA_bound[1] += 1self.DNA_bound = DNA_boundself.cross_rate = cross_rateself.mutate_rate = mutation_rateself.pop_size = pop_size# initial DNAs for winner and loserself.pop = np.random.randint(*DNA_bound, size=(1, self.DNA_size)).repeat(pop_size, axis=0)def translateDNA(self, pop):# convert binary DNA to decimal and normalize it to a range(0, 5)return pop.dot(2 ** np.arange(self.DNA_size)[::-1]) / float(2 ** self.DNA_size - 1) * X_BOUND[1]def get_fitness(self, product):return product      # it is OK to use product value as fitness in heredef crossover(self, loser_winner):      # crossover for losercross_idx = np.empty((self.DNA_size,)).astype(np.bool)for i in range(self.DNA_size):cross_idx[i] = True if np.random.rand() < self.cross_rate else False  # crossover indexloser_winner[0, cross_idx] = loser_winner[1, cross_idx]  # assign winners genes to loserreturn loser_winnerdef mutate(self, loser_winner):         # mutation for losermutation_idx = np.empty((self.DNA_size,)).astype(np.bool)for i in range(self.DNA_size):mutation_idx[i] = True if np.random.rand() < self.mutate_rate else False  # mutation index# flip values in mutation pointsloser_winner[0, mutation_idx] = ~loser_winner[0, mutation_idx].astype(np.bool)return loser_winnerdef evolve(self, n):    # nature selection wrt pop's fitnessfor _ in range(n):  # random pick and compare n timessub_pop_idx = np.random.choice(np.arange(0, self.pop_size), size=2, replace=False)sub_pop = self.pop[sub_pop_idx]             # pick 2 from popproduct = F(self.translateDNA(sub_pop))fitness = self.get_fitness(product)loser_winner_idx = np.argsort(fitness)loser_winner = sub_pop[loser_winner_idx]    # the first is loser and second is winnerloser_winner = self.crossover(loser_winner)loser_winner = self.mutate(loser_winner)self.pop[sub_pop_idx] = loser_winnerDNA_prod = self.translateDNA(self.pop)pred = F(DNA_prod)return DNA_prod, predplt.ion()       # something about plotting
x = np.linspace(*X_BOUND, 200)
plt.plot(x, F(x))ga = MGA(DNA_size=DNA_SIZE, DNA_bound=[0, 1], cross_rate=CROSS_RATE, mutation_rate=MUTATION_RATE, pop_size=POP_SIZE)for _ in range(N_GENERATIONS):                    # 100 generationsDNA_prod, pred = ga.evolve(5)          # natural selection, crossover and mutation# something about plottingif 'sca' in globals(): sca.remove()sca = plt.scatter(DNA_prod, pred, s=200, lw=0, c='red', alpha=0.5); plt.pause(0.05)plt.ioff();plt.show()

转载自:https://blog.csdn.net/ziteng_du/article/details/79613174

交流QQ:2422035338

这篇关于Microbial Genetic Algorithm(微遗传算法)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/469466

相关文章

【tensorflow 使用错误】tensorflow2.0 过程中出现 Error : Failed to get convolution algorithm

如果在使用 tensorflow 过程中出现 Error : Failed to get convolution algorithm ,这是因为显卡内存被耗尽了。 解决办法: 在代码的开头加入如下两句,动态分配显存 physical_device = tf.config.experimental.list_physical_devices("GPU")tf.config.experiment

遗传算法Github初学

遗传算法的理论是根据达尔文进化论而设计出来的算法:人类是朝着好的方向(最优解)进化,进化过程中,会自动选择优良基因,淘汰劣等基因 遗传算法(genetic algorithm——GA)是计算数学中用于解决最佳化的搜索算法,是进化算法的一种。进化算法最初是借鉴了进化生物学中的一些现象而发展起来的,这些现象包括遗传、突变、自然选择、杂交等。 搜索算法的共同特征为: 首先组成一组候选解依据某些适应

纪念一下自己的Coursera Princeton Algorithm的课程第一个assignment

今天终于完成了第一个Union-Find的assignment,之前觉得特别的难,可是最后自己也搞定了。而且是100%满分。 自己后来plot了一下自己的分数,也许这就是学习曲线吧。刚开始不会,到后来中期显著提高,但是要到100%,那就要经历更多的波折,甚至是下降都有可能。最后才能达到100%满分。 我觉得最有用的还是下面这段源代码: /*************************

[Algorithm][综合训练][栈和排序][加减]详细讲解

目录 1.栈和排序1.题目链接2.算法原理详解 && 代码实现 2.加减1.题目链接2.算法原理详解 && 代码实现 1.栈和排序 1.题目链接 栈和排序 2.算法原理详解 && 代码实现 解法:栈 + 贪心 -> 每次尽可能先让当前需要的最大值弹出去vector<int> solve(vector<int>& a) {int n = a.size();vect

[Algorithm][综合训练][四个选项][接雨水]详细讲解

目录 1.四个选项1.题目链接2.算法原理详解 && 代码实现 2.接雨水1.题目链接2.算法原理详解 && 代码实现 1.四个选项 1.题目链接 四个选项 2.算法原理详解 && 代码实现 解法:DFS(暴搜) + 剪枝 + Hash 剪枝: 填某个数的时候,要看看还有没有剩余次数填某个数的时候,符不符合若干题的选项必须相同 #include <iostr

General Algorithm

Y or N Silly Board Game String Sorting Find the smallest char in a string Integer Sorting Pairs Y or N Silly Board Game 2 opponents: A&B. To represent a board by String[] board = ne

零基础学启发式算法(5)-遗传算法 (Genetic Algorithm)

一、遗传算法 (Genetic Algorithm, GA)  源于达尔文的进化论,将问题的一个解当作种群中的一个个体。 gene:基因 chromosome: 染色体 population:种群 crossover:交叉 mutation:变异 selection:选择 通过多轮的“选择,交叉和变异”,选择适应度最好的个体作为问题的最优解。 选择:优胜劣汰,适者生存。

多边形快速凸包算法(Melkman‘s Algorithm)

前言 平面点集的凸包算法一文介绍了如何计算平面点集或者任意多边形的凸包。对于随机的平面点集,Graham scan和Andraw's 单调链算法已经是最快的算法了。但是对于没有自相交的封闭的简单多边形,存在线性复杂度的算法。下面介绍这一优雅高效的算法。 一般的2D凸包算法,首先将点进行排序(时间复杂度),然后利用栈操作在O(n)的时间复杂度内计算凸包。初始的排序决定了最终的时间复杂度。但是本文

one model / ensemble method /meta-algorithm 迁移学习算不算ensemble method

鉴于object detection COCO数据集的论文经常出现 single-model 也就是说,这是一个对网络的分类,呢它是什么意思,有什么特点。相对应的另一类是什么。就是下面介绍的ensemble learning。 不过比如说网络初值是用别人的网络训练好的数值,一定意义来讲是在优化空间找到一个初值,对于自己网络的结果的影响究竟有多大,也就是说,用随机初始网络得到的结果是否有不同,有多

[Algorithm][综合训练][体育课测验(二)][合唱队形][宵暗的妖怪]详细讲解

目录 1.体育课测验(二)1.题目链接2.算法原理详解 && 代码实现 2.合唱队形1.题目链接2.算法原理详解 && 代码实现 3.宵暗的妖怪1.题目链接2.算法原理详解 && 代码实现 1.体育课测验(二) 1.题目链接 体育课测验(二) 2.算法原理详解 && 代码实现 说明:单纯积累一题[拓扑排序]用于加强印象 能识别模型,并且写出代码 vector<i