柏林噪声C++

2023-12-07 13:12
文章标签 c++ 噪声 柏林

本文主要是介绍柏林噪声C++,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

柏林噪声

随机噪声
在这里插入图片描述
如上图所示随机噪声没有任何规律可言,我们希望生成有一些意义的局部连续的随机图案

一维柏林噪声

在这里插入图片描述

假设希望生成一段局部连续的随机曲线,可以采用插值的方式:在固定点随机分配y值(一般是整数点),其他的点使用插值算法

方法一:线性插值的方式

公式如下:
在这里插入图片描述
【数字图像处理】二维(2D)线性插值的应用
y = a*y1 + (1-a)*y2

我们画图看看:
在这里插入图片描述

import math
import numpy as np
import matplotlib.pyplot as pltperm = [151,160,137,91,90,15,131,13,201,95,96,53,194,233,7,225,140,36,103,30,69,142,8,99,37,240,21,10,23,190, 6,148,247,120,234,75,0,26,197,62,94,252,219,203,117,35,11,32,57,177,33,88,237,149,56,87,174,20,125,136,171,168, 68,175,74,165,71,134,139,48,27,166,77,146,158,231,83,111,229,122,60,211,133,230,220,105,92,41,55,46,245,40,244,102,143,54, 65,25,63,161, 1,216,80,73,209,76,132,187,208, 89,18,169,200,196,135,130,116,188,159,86,164,100,109,198,173,186, 3,64,52,217,226,250,124,123,5,202,38,147,118,126,255,82,85,212,207,206,59,227,47,16,58,17,182,189,28,42,223,183,170,213,119,248,152, 2,44,154,163, 70,221,153,101,155,167, 43,172,9,129,22,39,253, 19,98,108,110,79,113,224,232,178,185, 112,104,218,246,97,228,251,34,242,193,238,210,144,12,191,179,162,241, 81,51,145,235,249,14,239,107,49,192,214, 31,181,199,106,157,184, 84,204,176,115,121,50,45,127, 4,150,254,138,236,205,93,222,114,67,29,24,72,243,141,128,195,78,66,215,61,156,180]def perlin1D(x):# 整数x1和x2的坐标x1 = math.floor(x)x2 = x1 + 1# x1和x2的梯度值grad1 = perm[x1 % 255] * 2.0 - 255.0grad2 = perm[x2 % 255] * 2.0 - 255.0#x1和x2指向x的方向向量vec1 = x - x1vec2 = x - x2# x到x1的距离即vec1,利用公式3计算平滑参数t = 3 * pow(vec1, 2) - 2 * pow(vec1, 3)#梯度值与方向向量的乘积product1 = grad1 * vec1product2 = grad2 * vec2return product1 + t * (product2 - product1)def linear1D(x):# 整数x1和x2的坐标x1 = math.floor(x)x2 = x1 + 1# y值 随机数grad1 = perm[x1 % 255] * 2.0 - 255.0grad2 = perm[x2 % 255] * 2.0 - 255.0t=x - x1return grad1 + t * (grad2 - grad1)def linear1D_plus(x):# 整数x1和x2的坐标x1 = math.floor(x)x2 = x1 + 1# x1和x2的梯度值grad1 = perm[x1 % 255] * 2.0 - 255.0grad2 = perm[x2 % 255] * 2.0 - 255.0#x1和x2指向x的方向向量vec1 = x - x1vec2 = x - x2t=x - x1#梯度值与方向向量的乘积product1 = grad1 * vec1product2 = grad2 * vec2return product1 + t * (product2 - product1)def draw1D():# 绘制散点图x0=[]y0=[]for i in range(11):x0.append(i)y0.append( perm[i] * 2.0 - 255.0)plt.scatter(x0, y0,color='red')# 绘制1D的图像x = np.linspace(0, 10, 100)y = np.zeros(100)y1 = np.zeros(100)y2 = np.zeros(100)for i in range(100):y[i] = perlin1D(x[i])y1[i] = linear1D(x[i])y2[i] =linear1D_plus(x[i])# 绘制图像plt.plot(x, y,color='deepskyblue')plt.plot(x, y1,color='green')plt.plot(x, y2,color='orange')plt.show()draw1D()

线性插值

x取[0,10]这个区间,y在整数点随机取值,非整数点使用线性插值
ps 随机值使用伪随机数perm,柏林噪声在图像领域使用,颜色的取值范围是[0,255],所以perm的值也是[0,255]
上图红色的点是:整数点随机取值的结果,绿色的线是线性插值。
y = t ∗ y 2 + ( 1 − t ) ∗ y 1 = y 1 + t ( y 2 − y 1 ) y = t*y2+ (1-t)*y1 = y1 + t(y2- y1 ) y=ty2+(1t)y1=y1+t(y2y1)
t = x − x 1 t=x-x1 t=xx1

线性插值plus

我们希望它更平滑一点,如果插值点x的值y与附近点x1,x2的位置相关
所以改进上述算法:
y = t ∗ y 2 ∗ w 2 + ( 1 − t ) ∗ y 1 ∗ w 1 = y 1 ∗ w 1 + t ( y 2 ∗ w 2 − y 1 ∗ w 1 ) y = t*y2*w2 + (1-t)*y1*w1 = y1*w1 + t(y2*w2 - y1*w1 ) y=ty2w2+(1t)y1w1=y1w1+t(y2w2y1w1)
w是权重系数,也是柏林算法中的方向向量vec1 = x - x1
如图中黄色的线

柏林噪声

柏林噪声在此基础上再加强一步:
t = 3 t 2 − 2 t 3 t=3t^2 -2t^3 t=3t22t3

算法步骤:
input: x

  1. 计算周围的点:x1 , x2
  2. 计算x1 , x2 梯度 : grad1, grad2 随机取[0,255]
  3. 方向向量: (vec1 =x-x1 ;vec2 = x-x2)
  4. 梯度值与方向向量的乘积 product=grad*vec
  5. 计算系数 t=3t^2 -2t^3
  6. 插值:y = product1 + t * (product2 - product1)
    output :y

根据上述原理 可以画一个不规则的圆形

def drawCircle():#画圆形# 创建一个坐标系fig, ax = plt.subplots()# 定义圆心和半径center = (0, 0)radius = 10# 生成圆的数据theta = np.linspace(0, 2*np.pi, 100)x = radius * np.cos(theta) + center[0]y = radius * np.sin(theta) + center[1]y1 = np.zeros(100)for i in range(100):y1[i] = y[i]+ perlin1D(theta[i]*5)/255*2# 画出圆形ax.plot(x, y,color='orange')ax.plot(x, y1,color='deepskyblue')# 设置坐标轴范围ax.set_xlim([-15, 15])ax.set_ylim([-15, 15])# 显示图像plt.show()

在这里插入图片描述

参考文献

Using Perlin Noise to Generate 2D Terrain and Water
FastNoiseSIMD github
libnoise
柏林噪声
一篇文章搞懂柏林噪声算法,附代码讲解

游戏开发技术杂谈2:理解插值函数lerp

[Nature of Code] 柏林噪声
https://adrianb.io/2014/08/09/perlinnoise.html

这篇关于柏林噪声C++的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/466008

相关文章

深入理解C++ 空类大小

《深入理解C++空类大小》本文主要介绍了C++空类大小,规定空类大小为1字节,主要是为了保证对象的唯一性和可区分性,满足数组元素地址连续的要求,下面就来了解一下... 目录1. 保证对象的唯一性和可区分性2. 满足数组元素地址连续的要求3. 与C++的对象模型和内存管理机制相适配查看类对象内存在C++中,规

在 VSCode 中配置 C++ 开发环境的详细教程

《在VSCode中配置C++开发环境的详细教程》本文详细介绍了如何在VisualStudioCode(VSCode)中配置C++开发环境,包括安装必要的工具、配置编译器、设置调试环境等步骤,通... 目录如何在 VSCode 中配置 C++ 开发环境:详细教程1. 什么是 VSCode?2. 安装 VSCo

C++11的函数包装器std::function使用示例

《C++11的函数包装器std::function使用示例》C++11引入的std::function是最常用的函数包装器,它可以存储任何可调用对象并提供统一的调用接口,以下是关于函数包装器的详细讲解... 目录一、std::function 的基本用法1. 基本语法二、如何使用 std::function

【C++ Primer Plus习题】13.4

大家好,这里是国中之林! ❥前些天发现了一个巨牛的人工智能学习网站,通俗易懂,风趣幽默,忍不住分享一下给大家。点击跳转到网站。有兴趣的可以点点进去看看← 问题: 解答: main.cpp #include <iostream>#include "port.h"int main() {Port p1;Port p2("Abc", "Bcc", 30);std::cout <<

C++包装器

包装器 在 C++ 中,“包装器”通常指的是一种设计模式或编程技巧,用于封装其他代码或对象,使其更易于使用、管理或扩展。包装器的概念在编程中非常普遍,可以用于函数、类、库等多个方面。下面是几个常见的 “包装器” 类型: 1. 函数包装器 函数包装器用于封装一个或多个函数,使其接口更统一或更便于调用。例如,std::function 是一个通用的函数包装器,它可以存储任意可调用对象(函数、函数

C++11第三弹:lambda表达式 | 新的类功能 | 模板的可变参数

🌈个人主页: 南桥几晴秋 🌈C++专栏: 南桥谈C++ 🌈C语言专栏: C语言学习系列 🌈Linux学习专栏: 南桥谈Linux 🌈数据结构学习专栏: 数据结构杂谈 🌈数据库学习专栏: 南桥谈MySQL 🌈Qt学习专栏: 南桥谈Qt 🌈菜鸡代码练习: 练习随想记录 🌈git学习: 南桥谈Git 🌈🌈🌈🌈🌈🌈🌈🌈🌈🌈🌈🌈🌈�

【C++】_list常用方法解析及模拟实现

相信自己的力量,只要对自己始终保持信心,尽自己最大努力去完成任何事,就算事情最终结果是失败了,努力了也不留遗憾。💓💓💓 目录   ✨说在前面 🍋知识点一:什么是list? •🌰1.list的定义 •🌰2.list的基本特性 •🌰3.常用接口介绍 🍋知识点二:list常用接口 •🌰1.默认成员函数 🔥构造函数(⭐) 🔥析构函数 •🌰2.list对象

06 C++Lambda表达式

lambda表达式的定义 没有显式模版形参的lambda表达式 [捕获] 前属性 (形参列表) 说明符 异常 后属性 尾随类型 约束 {函数体} 有显式模版形参的lambda表达式 [捕获] <模版形参> 模版约束 前属性 (形参列表) 说明符 异常 后属性 尾随类型 约束 {函数体} 含义 捕获:包含零个或者多个捕获符的逗号分隔列表 模板形参:用于泛型lambda提供个模板形参的名

6.1.数据结构-c/c++堆详解下篇(堆排序,TopK问题)

上篇:6.1.数据结构-c/c++模拟实现堆上篇(向下,上调整算法,建堆,增删数据)-CSDN博客 本章重点 1.使用堆来完成堆排序 2.使用堆解决TopK问题 目录 一.堆排序 1.1 思路 1.2 代码 1.3 简单测试 二.TopK问题 2.1 思路(求最小): 2.2 C语言代码(手写堆) 2.3 C++代码(使用优先级队列 priority_queue)

【C++高阶】C++类型转换全攻略:深入理解并高效应用

📝个人主页🌹:Eternity._ ⏩收录专栏⏪:C++ “ 登神长阶 ” 🤡往期回顾🤡:C++ 智能指针 🌹🌹期待您的关注 🌹🌹 ❀C++的类型转换 📒1. C语言中的类型转换📚2. C++强制类型转换⛰️static_cast🌞reinterpret_cast⭐const_cast🍁dynamic_cast 📜3. C++强制类型转换的原因📝