柏林噪声C++

2023-12-07 13:12
文章标签 c++ 噪声 柏林

本文主要是介绍柏林噪声C++,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

柏林噪声

随机噪声
在这里插入图片描述
如上图所示随机噪声没有任何规律可言,我们希望生成有一些意义的局部连续的随机图案

一维柏林噪声

在这里插入图片描述

假设希望生成一段局部连续的随机曲线,可以采用插值的方式:在固定点随机分配y值(一般是整数点),其他的点使用插值算法

方法一:线性插值的方式

公式如下:
在这里插入图片描述
【数字图像处理】二维(2D)线性插值的应用
y = a*y1 + (1-a)*y2

我们画图看看:
在这里插入图片描述

import math
import numpy as np
import matplotlib.pyplot as pltperm = [151,160,137,91,90,15,131,13,201,95,96,53,194,233,7,225,140,36,103,30,69,142,8,99,37,240,21,10,23,190, 6,148,247,120,234,75,0,26,197,62,94,252,219,203,117,35,11,32,57,177,33,88,237,149,56,87,174,20,125,136,171,168, 68,175,74,165,71,134,139,48,27,166,77,146,158,231,83,111,229,122,60,211,133,230,220,105,92,41,55,46,245,40,244,102,143,54, 65,25,63,161, 1,216,80,73,209,76,132,187,208, 89,18,169,200,196,135,130,116,188,159,86,164,100,109,198,173,186, 3,64,52,217,226,250,124,123,5,202,38,147,118,126,255,82,85,212,207,206,59,227,47,16,58,17,182,189,28,42,223,183,170,213,119,248,152, 2,44,154,163, 70,221,153,101,155,167, 43,172,9,129,22,39,253, 19,98,108,110,79,113,224,232,178,185, 112,104,218,246,97,228,251,34,242,193,238,210,144,12,191,179,162,241, 81,51,145,235,249,14,239,107,49,192,214, 31,181,199,106,157,184, 84,204,176,115,121,50,45,127, 4,150,254,138,236,205,93,222,114,67,29,24,72,243,141,128,195,78,66,215,61,156,180]def perlin1D(x):# 整数x1和x2的坐标x1 = math.floor(x)x2 = x1 + 1# x1和x2的梯度值grad1 = perm[x1 % 255] * 2.0 - 255.0grad2 = perm[x2 % 255] * 2.0 - 255.0#x1和x2指向x的方向向量vec1 = x - x1vec2 = x - x2# x到x1的距离即vec1,利用公式3计算平滑参数t = 3 * pow(vec1, 2) - 2 * pow(vec1, 3)#梯度值与方向向量的乘积product1 = grad1 * vec1product2 = grad2 * vec2return product1 + t * (product2 - product1)def linear1D(x):# 整数x1和x2的坐标x1 = math.floor(x)x2 = x1 + 1# y值 随机数grad1 = perm[x1 % 255] * 2.0 - 255.0grad2 = perm[x2 % 255] * 2.0 - 255.0t=x - x1return grad1 + t * (grad2 - grad1)def linear1D_plus(x):# 整数x1和x2的坐标x1 = math.floor(x)x2 = x1 + 1# x1和x2的梯度值grad1 = perm[x1 % 255] * 2.0 - 255.0grad2 = perm[x2 % 255] * 2.0 - 255.0#x1和x2指向x的方向向量vec1 = x - x1vec2 = x - x2t=x - x1#梯度值与方向向量的乘积product1 = grad1 * vec1product2 = grad2 * vec2return product1 + t * (product2 - product1)def draw1D():# 绘制散点图x0=[]y0=[]for i in range(11):x0.append(i)y0.append( perm[i] * 2.0 - 255.0)plt.scatter(x0, y0,color='red')# 绘制1D的图像x = np.linspace(0, 10, 100)y = np.zeros(100)y1 = np.zeros(100)y2 = np.zeros(100)for i in range(100):y[i] = perlin1D(x[i])y1[i] = linear1D(x[i])y2[i] =linear1D_plus(x[i])# 绘制图像plt.plot(x, y,color='deepskyblue')plt.plot(x, y1,color='green')plt.plot(x, y2,color='orange')plt.show()draw1D()

线性插值

x取[0,10]这个区间,y在整数点随机取值,非整数点使用线性插值
ps 随机值使用伪随机数perm,柏林噪声在图像领域使用,颜色的取值范围是[0,255],所以perm的值也是[0,255]
上图红色的点是:整数点随机取值的结果,绿色的线是线性插值。
y = t ∗ y 2 + ( 1 − t ) ∗ y 1 = y 1 + t ( y 2 − y 1 ) y = t*y2+ (1-t)*y1 = y1 + t(y2- y1 ) y=ty2+(1t)y1=y1+t(y2y1)
t = x − x 1 t=x-x1 t=xx1

线性插值plus

我们希望它更平滑一点,如果插值点x的值y与附近点x1,x2的位置相关
所以改进上述算法:
y = t ∗ y 2 ∗ w 2 + ( 1 − t ) ∗ y 1 ∗ w 1 = y 1 ∗ w 1 + t ( y 2 ∗ w 2 − y 1 ∗ w 1 ) y = t*y2*w2 + (1-t)*y1*w1 = y1*w1 + t(y2*w2 - y1*w1 ) y=ty2w2+(1t)y1w1=y1w1+t(y2w2y1w1)
w是权重系数,也是柏林算法中的方向向量vec1 = x - x1
如图中黄色的线

柏林噪声

柏林噪声在此基础上再加强一步:
t = 3 t 2 − 2 t 3 t=3t^2 -2t^3 t=3t22t3

算法步骤:
input: x

  1. 计算周围的点:x1 , x2
  2. 计算x1 , x2 梯度 : grad1, grad2 随机取[0,255]
  3. 方向向量: (vec1 =x-x1 ;vec2 = x-x2)
  4. 梯度值与方向向量的乘积 product=grad*vec
  5. 计算系数 t=3t^2 -2t^3
  6. 插值:y = product1 + t * (product2 - product1)
    output :y

根据上述原理 可以画一个不规则的圆形

def drawCircle():#画圆形# 创建一个坐标系fig, ax = plt.subplots()# 定义圆心和半径center = (0, 0)radius = 10# 生成圆的数据theta = np.linspace(0, 2*np.pi, 100)x = radius * np.cos(theta) + center[0]y = radius * np.sin(theta) + center[1]y1 = np.zeros(100)for i in range(100):y1[i] = y[i]+ perlin1D(theta[i]*5)/255*2# 画出圆形ax.plot(x, y,color='orange')ax.plot(x, y1,color='deepskyblue')# 设置坐标轴范围ax.set_xlim([-15, 15])ax.set_ylim([-15, 15])# 显示图像plt.show()

在这里插入图片描述

参考文献

Using Perlin Noise to Generate 2D Terrain and Water
FastNoiseSIMD github
libnoise
柏林噪声
一篇文章搞懂柏林噪声算法,附代码讲解

游戏开发技术杂谈2:理解插值函数lerp

[Nature of Code] 柏林噪声
https://adrianb.io/2014/08/09/perlinnoise.html

这篇关于柏林噪声C++的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/466008

相关文章

从入门到精通C++11 <chrono> 库特性

《从入门到精通C++11<chrono>库特性》chrono库是C++11中一个非常强大和实用的库,它为时间处理提供了丰富的功能和类型安全的接口,通过本文的介绍,我们了解了chrono库的基本概念... 目录一、引言1.1 为什么需要<chrono>库1.2<chrono>库的基本概念二、时间段(Durat

C++20管道运算符的实现示例

《C++20管道运算符的实现示例》本文简要介绍C++20管道运算符的使用与实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧... 目录标准库的管道运算符使用自己实现类似的管道运算符我们不打算介绍太多,因为它实际属于c++20最为重要的

Visual Studio 2022 编译C++20代码的图文步骤

《VisualStudio2022编译C++20代码的图文步骤》在VisualStudio中启用C++20import功能,需设置语言标准为ISOC++20,开启扫描源查找模块依赖及实验性标... 默认创建Visual Studio桌面控制台项目代码包含C++20的import方法。右键项目的属性:

c++中的set容器介绍及操作大全

《c++中的set容器介绍及操作大全》:本文主要介绍c++中的set容器介绍及操作大全,本文通过实例代码给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友参考下吧... 目录​​一、核心特性​​️ ​​二、基本操作​​​​1. 初始化与赋值​​​​2. 增删查操作​​​​3. 遍历方

解析C++11 static_assert及与Boost库的关联从入门到精通

《解析C++11static_assert及与Boost库的关联从入门到精通》static_assert是C++中强大的编译时验证工具,它能够在编译阶段拦截不符合预期的类型或值,增强代码的健壮性,通... 目录一、背景知识:传统断言方法的局限性1.1 assert宏1.2 #error指令1.3 第三方解决

C++11委托构造函数和继承构造函数的实现

《C++11委托构造函数和继承构造函数的实现》C++引入了委托构造函数和继承构造函数这两个重要的特性,本文主要介绍了C++11委托构造函数和继承构造函数的实现,具有一定的参考价值,感兴趣的可以了解一下... 目录引言一、委托构造函数1.1 委托构造函数的定义与作用1.2 委托构造函数的语法1.3 委托构造函

C++11作用域枚举(Scoped Enums)的实现示例

《C++11作用域枚举(ScopedEnums)的实现示例》枚举类型是一种非常实用的工具,C++11标准引入了作用域枚举,也称为强类型枚举,本文主要介绍了C++11作用域枚举(ScopedEnums... 目录一、引言二、传统枚举类型的局限性2.1 命名空间污染2.2 整型提升问题2.3 类型转换问题三、C

C++链表的虚拟头节点实现细节及注意事项

《C++链表的虚拟头节点实现细节及注意事项》虚拟头节点是链表操作中极为实用的设计技巧,它通过在链表真实头部前添加一个特殊节点,有效简化边界条件处理,:本文主要介绍C++链表的虚拟头节点实现细节及注... 目录C++链表虚拟头节点(Dummy Head)一、虚拟头节点的本质与核心作用1. 定义2. 核心价值二

C++ 检测文件大小和文件传输的方法示例详解

《C++检测文件大小和文件传输的方法示例详解》文章介绍了在C/C++中获取文件大小的三种方法,推荐使用stat()函数,并详细说明了如何设计一次性发送压缩包的结构体及传输流程,包含CRC校验和自动解... 目录检测文件的大小✅ 方法一:使用 stat() 函数(推荐)✅ 用法示例:✅ 方法二:使用 fsee

Windows下C++使用SQLitede的操作过程

《Windows下C++使用SQLitede的操作过程》本文介绍了Windows下C++使用SQLite的安装配置、CppSQLite库封装优势、核心功能(如数据库连接、事务管理)、跨平台支持及性能优... 目录Windows下C++使用SQLite1、安装2、代码示例CppSQLite:C++轻松操作SQ