MIT6S081-Lab2总结

2023-12-07 06:45
文章标签 总结 lab2 mit6s081

本文主要是介绍MIT6S081-Lab2总结,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

大家好,我叫徐锦桐,个人博客地址为www.xujintong.com,github地址为https://github.com/xjintong。平时记录一下学习计算机过程中获取的知识,还有日常折腾的经验,欢迎大家访问。

Lab2就是了解一下xv6的系统调用流程,熟悉一下系统调用过程中的结构啥的。

一、xv6系统调用流程

tarce系统调用为例

1、在用户态的user.h中加入对应加入对应系统调用的跳板函数

image-20231206141549969

2、在user/usys.pl中加入对应的entry()

image-20231206141753130

这个entry()是从用户态到内核态的一个关键,它的宏定义展开代码为:

entry的具体宏展开是:
sub entry {my $name = shift;print ".global $name\n";print "${name}:\n";print " li a7, SYS_${name}\n";print " ecall\n";print " ret\n";
}# 经过compiler后, entry("trace")为我们在usys.S里生成了如下的汇编代码# usys.S
.global trace
trace:li a7, SYS_traceecallret

通过上述代码可以看出来,entry将对应系统调用的调用号(SYS_trace)加入到a7寄存器中,然后通过ecall(risc-v汇编的系统调用指令)从用户态进入内核态。

3、之后首先会跳到kernel/syscall.c中的syscall函数。

系统调用号(SYS_trace–就是个宏定义)从a7寄存器中获取,然后通过这个号调用对应的系统调用函数,返回值存在a0寄存器中。

image-20231206142355776

4、通过系统调用号找到对应的系统调用函数

static uint64 (*syscalls[])(void) = {
[SYS_fork]    sys_fork,
[SYS_exit]    sys_exit,
[SYS_wait]    sys_wait,
[SYS_pipe]    sys_pipe,
[SYS_read]    sys_read,
[SYS_kill]    sys_kill,
[SYS_exec]    sys_exec,
[SYS_fstat]   sys_fstat,
[SYS_chdir]   sys_chdir,
[SYS_dup]     sys_dup,
[SYS_getpid]  sys_getpid,
[SYS_sbrk]    sys_sbrk,
[SYS_sleep]   sys_sleep,
[SYS_uptime]  sys_uptime,
[SYS_open]    sys_open,
[SYS_write]   sys_write,
[SYS_mknod]   sys_mknod,
[SYS_unlink]  sys_unlink,
[SYS_link]    sys_link,
[SYS_mkdir]   sys_mkdir,
[SYS_close]   sys_close,
[SYS_trace]   sys_trace,
[SYS_sysinfo] sys_sysinfo,
};

其实就是个数组,每个数组存着对应的系统调用函数指针。像SYS_fork、SYS_exit这些,其实就是一个宏定义,定义的编号,具体源码如下:

// System call numbers
#define SYS_fork    1
#define SYS_exit    2
#define SYS_wait    3
#define SYS_pipe    4
#define SYS_read    5
#define SYS_kill    6
#define SYS_exec    7
#define SYS_fstat   8
#define SYS_chdir   9
#define SYS_dup    10
#define SYS_getpid 11
#define SYS_sbrk   12
#define SYS_sleep  13
#define SYS_uptime 14
#define SYS_open   15
#define SYS_write  16
#define SYS_mknod  17
#define SYS_unlink 18
#define SYS_link   19
#define SYS_mkdir  20
#define SYS_close  21
#define SYS_trace  22
#define SYS_sysinfo 23

具体的系统调用的函数实现放在了各个文件中,这里是个extern函数。

比如说,sys_trace放在kernel/sysproc.c文件中,sys_read放在kernel/sysfile.c文件中。

image-20231206143328256

二、将内核态数据复制到用户态

应为内核态和用户态是隔离的,它俩拥有不用的地址空间、寄存器。所以获取系统调用用户态传入的参数我们需要argint()argaddrargstr进行获取。(这三个函数在kernel/syscall.c文件中)

将内核态的数据返回到用户态,这里是用到了copyout函数。具体源码如下:

// Copy from kernel to user.
// Copy len bytes from src to virtual address dstva in a given page table.
// Return 0 on success, -1 on error.
/*将 len 个字节从 src 复制到给定页表中的虚拟地址 dstva
*/
int
copyout(pagetable_t pagetable, uint64 dstva, char *src, uint64 len)
{uint64 n, va0, pa0;while(len > 0){va0 = PGROUNDDOWN(dstva);   // 找到虚拟地址对应的虚拟页表起始地址pa0 = walkaddr(pagetable, va0);   // 通过虚拟页表找到对应的物理页表起始地址if(pa0 == 0)return -1;n = PGSIZE - (dstva - va0);   // 计算该页表的剩余空间// 如果剩余空间大于要拷贝的数据长度,只拷贝数据长度部分if(n > len)n = len;/*在物理页表中,以(void *)(pa0 + (dstva - va0))地址开始,将n个字节的src,复制到对应位置*/memmove((void *)(pa0 + (dstva - va0)), src, n); len -= n;src += n;dstva = va0 + PGSIZE;}return 0;
}

核心就是通过虚拟地址找到对应变量的物理地址,然后直接复制到的物理地址上面。

流程:

  • 1、找到虚拟地址对应的虚拟页表起始地址。

  • 2、通过虚拟页表找到对应的物理页表起始地址

  • 3、如果剩余空间大于要拷贝的数据长度,只拷贝数据长度部分

  • 4、在物理页表中,以(void *)(pa0 + (dstva - va0))地址开始,将n个字节的src,复制到对应位置

三、杂

内核态的头文件

内核态的函数声明都在kernel/defs.h头文件中。

image-20231206143652669

一些结构

kernel/proc.c中定义了一个

struct proc proc[NPROC];

存着当前所有进程的proc结构。

image-20231206150341027

每个进程都对应一个proc结构,该结构存储着该进程的信息,运行状态,进程名字,pid号等等。

image-20231206150507722

这篇关于MIT6S081-Lab2总结的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/464882

相关文章

Android数据库Room的实际使用过程总结

《Android数据库Room的实际使用过程总结》这篇文章主要给大家介绍了关于Android数据库Room的实际使用过程,详细介绍了如何创建实体类、数据访问对象(DAO)和数据库抽象类,需要的朋友可以... 目录前言一、Room的基本使用1.项目配置2.创建实体类(Entity)3.创建数据访问对象(DAO

Java向kettle8.0传递参数的方式总结

《Java向kettle8.0传递参数的方式总结》介绍了如何在Kettle中传递参数到转换和作业中,包括设置全局properties、使用TransMeta和JobMeta的parameterValu... 目录1.传递参数到转换中2.传递参数到作业中总结1.传递参数到转换中1.1. 通过设置Trans的

C# Task Cancellation使用总结

《C#TaskCancellation使用总结》本文主要介绍了在使用CancellationTokenSource取消任务时的行为,以及如何使用Task的ContinueWith方法来处理任务的延... 目录C# Task Cancellation总结1、调用cancellationTokenSource.

HarmonyOS学习(七)——UI(五)常用布局总结

自适应布局 1.1、线性布局(LinearLayout) 通过线性容器Row和Column实现线性布局。Column容器内的子组件按照垂直方向排列,Row组件中的子组件按照水平方向排列。 属性说明space通过space参数设置主轴上子组件的间距,达到各子组件在排列上的等间距效果alignItems设置子组件在交叉轴上的对齐方式,且在各类尺寸屏幕上表现一致,其中交叉轴为垂直时,取值为Vert

学习hash总结

2014/1/29/   最近刚开始学hash,名字很陌生,但是hash的思想却很熟悉,以前早就做过此类的题,但是不知道这就是hash思想而已,说白了hash就是一个映射,往往灵活利用数组的下标来实现算法,hash的作用:1、判重;2、统计次数;

git使用的说明总结

Git使用说明 下载安装(下载地址) macOS: Git - Downloading macOS Windows: Git - Downloading Windows Linux/Unix: Git (git-scm.com) 创建新仓库 本地创建新仓库:创建新文件夹,进入文件夹目录,执行指令 git init ,用以创建新的git 克隆仓库 执行指令用以创建一个本地仓库的

二分最大匹配总结

HDU 2444  黑白染色 ,二分图判定 const int maxn = 208 ;vector<int> g[maxn] ;int n ;bool vis[maxn] ;int match[maxn] ;;int color[maxn] ;int setcolor(int u , int c){color[u] = c ;for(vector<int>::iter

整数Hash散列总结

方法:    step1  :线性探测  step2 散列   当 h(k)位置已经存储有元素的时候,依次探查(h(k)+i) mod S, i=1,2,3…,直到找到空的存储单元为止。其中,S为 数组长度。 HDU 1496   a*x1^2+b*x2^2+c*x3^2+d*x4^2=0 。 x在 [-100,100] 解的个数  const int MaxN = 3000

状态dp总结

zoj 3631  N 个数中选若干数和(只能选一次)<=M 的最大值 const int Max_N = 38 ;int a[1<<16] , b[1<<16] , x[Max_N] , e[Max_N] ;void GetNum(int g[] , int n , int s[] , int &m){ int i , j , t ;m = 0 ;for(i = 0 ;

go基础知识归纳总结

无缓冲的 channel 和有缓冲的 channel 的区别? 在 Go 语言中,channel 是用来在 goroutines 之间传递数据的主要机制。它们有两种类型:无缓冲的 channel 和有缓冲的 channel。 无缓冲的 channel 行为:无缓冲的 channel 是一种同步的通信方式,发送和接收必须同时发生。如果一个 goroutine 试图通过无缓冲 channel