FOJ Problem 1077 铁皮容器

2023-12-06 09:49
文章标签 容器 problem 1077 铁皮 foj

本文主要是介绍FOJ Problem 1077 铁皮容器,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

Problem Description
使用白铁皮制作圆柱容器(有盖),其中每个容器耗用的铁皮量(表面积)固定为1000平方厘米。在已知容器的容积情况下,编程计算容器底半径的最小可能取值。其中容器的容积为整数,半径精确到小数点后面一位。
Input
输入的第一行含一个正整数k (1<=k<=10),表示测试例的个数。后面紧接着k行,每行对应一个测试例,含一个整数n(0<=n<=20000),代表容积。
Output
每个测试例对应一行输出,含一个实数,表示半径的值,若无解则输出“NO”。
Sample Input
2
1000
3000
Sample Output
2.1

NO

 

 

//这题给我们的启示是精确到一位的时候要计算到两位 
//枚举就好了 
# include "stdio.h" 
# define pi 3.1415926535898
int main()
{double r;double v;int i, t;int flage;double min, num, ans;scanf("%d", &t);for(i=1; i<=t; i++){scanf("%lf", &v);min=0.0;flage=1;for(r=0.01; ; r=r+0.01){ if(pi*r*r>500)break;if(v/r+pi*r*r<=500){printf("%.1lf\n", r);flage=0;break;}}if(flage)printf("NO\n");}return 0;
}

 

 

 

 

 

 

这篇关于FOJ Problem 1077 铁皮容器的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/461392

相关文章

如何将Tomcat容器替换为Jetty容器

《如何将Tomcat容器替换为Jetty容器》:本文主要介绍如何将Tomcat容器替换为Jetty容器问题,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录Tomcat容器替换为Jetty容器修改Maven依赖配置文件调整(可选)重新构建和运行总结Tomcat容器替

C++从序列容器中删除元素的四种方法

《C++从序列容器中删除元素的四种方法》删除元素的方法在序列容器和关联容器之间是非常不同的,在序列容器中,vector和string是最常用的,但这里也会介绍deque和list以供全面了解,尽管在一... 目录一、简介二、移除给定位置的元素三、移除与某个值相等的元素3.1、序列容器vector、deque

C++常见容器获取头元素的方法大全

《C++常见容器获取头元素的方法大全》在C++编程中,容器是存储和管理数据集合的重要工具,不同的容器提供了不同的接口来访问和操作其中的元素,获取容器的头元素(即第一个元素)是常见的操作之一,本文将详细... 目录一、std::vector二、std::list三、std::deque四、std::forwa

Python容器类型之列表/字典/元组/集合方式

《Python容器类型之列表/字典/元组/集合方式》:本文主要介绍Python容器类型之列表/字典/元组/集合方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录1. 列表(List) - 有序可变序列1.1 基本特性1.2 核心操作1.3 应用场景2. 字典(D

Go语言中三种容器类型的数据结构详解

《Go语言中三种容器类型的数据结构详解》在Go语言中,有三种主要的容器类型用于存储和操作集合数据:本文主要介绍三者的使用与区别,感兴趣的小伙伴可以跟随小编一起学习一下... 目录基本概念1. 数组(Array)2. 切片(Slice)3. 映射(Map)对比总结注意事项基本概念在 Go 语言中,有三种主要

Spring核心思想之浅谈IoC容器与依赖倒置(DI)

《Spring核心思想之浅谈IoC容器与依赖倒置(DI)》文章介绍了Spring的IoC和DI机制,以及MyBatis的动态代理,通过注解和反射,Spring能够自动管理对象的创建和依赖注入,而MyB... 目录一、控制反转 IoC二、依赖倒置 DI1. 详细概念2. Spring 中 DI 的实现原理三、

csu 1446 Problem J Modified LCS (扩展欧几里得算法的简单应用)

这是一道扩展欧几里得算法的简单应用题,这题是在湖南多校训练赛中队友ac的一道题,在比赛之后请教了队友,然后自己把它a掉 这也是自己独自做扩展欧几里得算法的题目 题意:把题意转变下就变成了:求d1*x - d2*y = f2 - f1的解,很明显用exgcd来解 下面介绍一下exgcd的一些知识点:求ax + by = c的解 一、首先求ax + by = gcd(a,b)的解 这个

uva 10025 The ? 1 ? 2 ? ... ? n = k problem(数学)

题意是    ?  1  ?  2  ?  ...  ?  n = k 式子中给k,? 处可以填 + 也可以填 - ,问最小满足条件的n。 e.g k = 12  - 1 + 2 + 3 + 4 + 5 + 6 - 7 = 12 with n = 7。 先给证明,令 S(n) = 1 + 2 + 3 + 4 + 5 + .... + n 暴搜n,搜出当 S(n) >=

K8S(Kubernetes)开源的容器编排平台安装步骤详解

K8S(Kubernetes)是一个开源的容器编排平台,用于自动化部署、扩展和管理容器化应用程序。以下是K8S容器编排平台的安装步骤、使用方式及特点的概述: 安装步骤: 安装Docker:K8S需要基于Docker来运行容器化应用程序。首先要在所有节点上安装Docker引擎。 安装Kubernetes Master:在集群中选择一台主机作为Master节点,安装K8S的控制平面组件,如AP

Spring框架5 - 容器的扩展功能 (ApplicationContext)

private static ApplicationContext applicationContext;static {applicationContext = new ClassPathXmlApplicationContext("bean.xml");} BeanFactory的功能扩展类ApplicationContext进行深度的分析。ApplicationConext与 BeanF