使用 mtcnn 和 facenet 进行人脸识别

2023-12-05 19:20

本文主要是介绍使用 mtcnn 和 facenet 进行人脸识别,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

一、前言

人脸识别目前有比较多的应用了,比如门禁系统,手机的人脸解锁等等,今天,我们也来实现一个简单的人脸识别。

二、思维导图

三、详细步骤

3.1 准备

3.1.1 facenet 权重文件下载

下载地址:https://drive.google.com/drive/folders/1pwQ3H4aJ8a6yyJHZkTwtjcL4wYWQb7bn,下载 facenet_keras_weights.h5权重文件到本地。

3.1.2 依赖库安装

pip 安装库的时候如果太慢,设置软件源的地址为清华源,设置命令:

pip config set global.index-url https://pypi.tuna.tsinghua.edu.cn/simple
依赖库作用安装命令
OpenCV一个用于计算机视觉和图像处理的开源库。用于处理图像和视频。pip install opencv-python
mtcnn人脸检测的深度学习模型pip install mtcnn
tensorflow开源的机器学习框架pip install tensorflow
mysql-connector-python连接 mysql 数据库pip install mysql-connector-python
3.1.3 目录结构说明
├─docs 存放文档
├─encodings 存放本地图像特征值
├─facenet_model 存放 facenet 权重文件
├─font 存放简体字体
├─test_faces 测试集
├─train_faces 训练集
├─src 存放代码

3.2 训练人脸

3.2.1 人脸训练集准备

train_faces 文件夹下新建 hu_ge文件夹,然后从社交网络上获取胡歌图片放进去,作为训练集。

一张人脸生成的特征值显然是不够的,因此我们需要多张人脸,不考虑过拟合的情况下,人脸越多越精确。

3.2.2 加载模型

这边加载模型是 ResNetV2,没有引用库,而是手动去构建神经网络的,我尝试去直接使用 ResNet 库没成功,部分构建代码:

def inception_resnet_v2():inputs = Input(shape=(160, 160, 3))# 第一层是一个卷积层,应用了 32 个大小为 3x3 的滤波器x = Conv2D(32, 3, strides=2, padding='valid', use_bias=False, name= 'Conv2d_1a_3x3') (inputs)# 对输入进行批量归一化x = BatchNormalization(axis=3, momentum=0.995, epsilon=0.001, scale=False, name='Conv2d_1a_3x3_BatchNorm')(x)# 应用 ReLU 激活函数x = Activation('relu', name='Conv2d_1a_3x3_Activation')(x)x = Conv2D(32, 3, strides=1, padding='valid', use_bias=False, name= 'Conv2d_2a_3x3') (x)x = BatchNormalization(axis=3, momentum=0.995, epsilon=0.001, scale=False, name='Conv2d_2a_3x3_BatchNorm')(x)x = Activation('relu', name='Conv2d_2a_3x3_Activation')(x)x = Conv2D(64, 3, strides=1, padding='same', use_bias=False, name= 'Conv2d_2b_3x3') (x)x = BatchNormalization(axis=3, momentum=0.995, epsilon=0.001, scale=False, name='Conv2d_2b_3x3_BatchNorm')(x)x = Activation('relu', name='Conv2d_2b_3x3_Activation')(x)x = MaxPooling2D(3, strides=2, name='MaxPool_3a_3x3')(x)x = Conv2D(80, 1, strides=1, padding='valid', use_bias=False, name= 'Conv2d_3b_1x1') (x)x = BatchNormalization(axis=3, momentum=0.995, epsilon=0.001, scale=False, name='Conv2d_3b_1x1_BatchNorm')(x)x = Activation('relu', name='Conv2d_3b_1x1_Activation')(x)x = Conv2D(192, 3, strides=1, padding='valid', use_bias=False, name= 'Conv2d_4a_3x3') (x)x = BatchNormalization(axis=3, momentum=0.995, epsilon=0.001, scale=False, name='Conv2d_4a_3x3_BatchNorm')(x)x = Activation('relu', name='Conv2d_4a_3x3_Activation')(x)x = Conv2D(256, 3, strides=2, padding='valid', use_bias=False, name= 'Conv2d_4b_3x3') (x)x = BatchNormalization(axis=3, momentum=0.995, epsilon=0.001, scale=False, name='Conv2d_4b_3x3_BatchNorm')(x)x = Activation('relu', name='Conv2d_4b_3x3_Activation')(x)

这边就涉及到神经网络比较底层的知识,我也不太懂,我就直接使用了。
加载完模型后,加载 facenet 权重文件。
最后再加载 mtcnn 来识别人脸。

face_encoder = inception_resnet_v2()
facenet_weight_path = "../facenet_model/facenet_keras_weights.h5"
face_encoder.load_weights(facenet_weight_path)face_detector = mtcnn.MTCNN()
3.2.3 读取图片、转换颜色空间

OpenCV 读取图片默认是以 BGR 颜色空间,如果我们要给 mtcnn识别人脸,要先转为 RGB 颜色空间。

# 读取图片
img_BGR = cv2.imread(image_path)
# 将一幅图像从 BGR(蓝绿红)颜色空间转换为 RGB(红绿蓝)颜色空间
img_RGB = cv2.cvtColor(img_BGR, cv2.COLOR_BGR2RGB)
3.2.4 mtcnn 识别人脸具体位置

MTCNN 是一种检测图像上的人脸和面部标志的神经网络。

x = face_detector.detect_faces(img_RGB)
print(x)

mtcnn 会生成人脸框的坐标和人脸上五个关键点的坐标,分别是左眼,右眼,鼻子,嘴唇的左边界,嘴唇的右边界。

{'box': [468, 98, 195, 249],'confidence': 0.9999933242797852,'keypoints': {'left_eye': (534, 190),'right_eye': (624, 186),'nose': (590, 236),'mouth_left': (549, 294),'mouth_right': (620, 291)}
}

显示一下:

# 人脸的框的左上角坐标和宽高
x1, y1, width, height = x[0]['box']
x1, y1 = abs(x1), abs(y1)
x2, y2 = x1 + width, y1 + height
# 绘制人脸框
cv2.rectangle(img_BGR, (x1, y1), (x2, y2), (0, 255, 0), 2)
# 绘制人脸关键点
for keypoint, coordinates in x[0]['keypoints'].items():cv2.circle(img_BGR, coordinates, 2, (0, 0, 255), -1)
# 显示
cv2.imshow('Detected Face', img_BGR)
cv2.waitKey(0)
cv2.destroyAllWindows()

# 裁剪出人脸部分
face = img_RGB[y1:y2, x1:x2]
3.2.5 归一化、设置图片大小、生成图像特征值

归一化,将像素值从 [0, 255] 归一化到 [0, 1],如果训练的特征分布和测试的差异很大,那么对输入数据进行归一化,可以在训练和测试过程中保持一致的特征分布。

def normalize(img):"""归一化处理:将数据缩放到均值为 0,标准差为 1 的标准正态分布像素值通常是在 0 到 255 的范围内。例如,将像素值从 [0, 255] 归一化到 [0, 1]。:param img::return: 归一化结果"""# 获取所有像素的平均值,标准差mean, std = img.mean(), img.std()return (img - mean) / std

face_encoder.predict(face_d)[0]这个函数可以对输入的人脸图像进行特征提取,我们这边只获取单张人脸的特征,所以取下标 0。

face = normalize(face)# 重新设置大小
face = cv2.resize(face, required_shape)
# 扩展(增加)数组的维度
face_d = np.expand_dims(face, axis=0)
encode = face_encoder.predict(face_d)[0]
encodes.append(encode)

encode 只是一张图像的特征值,我们要训练很多张才能实现泛化效果比较好的模型,因此用 encodes 存放每一张图像的特征值。

3.2.6 特征求和、存放到数据库中
if encodes:# 特征求和# 计算每一列的总和encode = np.sum(encodes, axis=0)# 将特征向量标准化为单位向量encode = l2_normalizer.transform(np.expand_dims(encode, axis=0))[0]image_feature = base64.b64encode(encode).decode('utf-8')# 获取标签中文名 hu_ge -> 胡歌label_chinese_name = get_label_chinese_name(face_names)encoding_dict[face_names] = encodesave_image_feature(face_names, label_chinese_name, image_feature)

3.3 测试人脸

将需要测试的人脸图片放在 test_faces 文件夹下,这四张都是全新的图片,模型不知道的,这样才可以进行预测。

也是对每一张图像生成人脸的特征值,然后和数据库中的特征值进行比较。

dist = cosine(input_feature, image_feature)

**在机器学习中,欧氏距离用于特征空间中样本之间的相似性度量,通过 ****cosine**函数计算相似度,只要小于相似度阈值,我们就认为属于同一张人脸。

原来我是设置成 0.5,可能由于训练的样本数太少,不是冯提莫的图片也会被认为是冯提莫,造成错误识别,它的值是 0.480.49 这样,后面我改成 0.4 就好了。
冯提莫和胡歌的人脸特征我提前训练好了,因此这边可以识别到,杨幂和宋轶没有训练,所以识别不到,显示未知。

四、参考资料

  • facenet
  • mtcnn
  • Face Detection using MTCNN

这篇关于使用 mtcnn 和 facenet 进行人脸识别的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/458809

相关文章

Conda与Python venv虚拟环境的区别与使用方法详解

《Conda与Pythonvenv虚拟环境的区别与使用方法详解》随着Python社区的成长,虚拟环境的概念和技术也在不断发展,:本文主要介绍Conda与Pythonvenv虚拟环境的区别与使用... 目录前言一、Conda 与 python venv 的核心区别1. Conda 的特点2. Python v

Spring Boot中WebSocket常用使用方法详解

《SpringBoot中WebSocket常用使用方法详解》本文从WebSocket的基础概念出发,详细介绍了SpringBoot集成WebSocket的步骤,并重点讲解了常用的使用方法,包括简单消... 目录一、WebSocket基础概念1.1 什么是WebSocket1.2 WebSocket与HTTP

C#中Guid类使用小结

《C#中Guid类使用小结》本文主要介绍了C#中Guid类用于生成和操作128位的唯一标识符,用于数据库主键及分布式系统,支持通过NewGuid、Parse等方法生成,感兴趣的可以了解一下... 目录前言一、什么是 Guid二、生成 Guid1. 使用 Guid.NewGuid() 方法2. 从字符串创建

Python使用python-can实现合并BLF文件

《Python使用python-can实现合并BLF文件》python-can库是Python生态中专注于CAN总线通信与数据处理的强大工具,本文将使用python-can为BLF文件合并提供高效灵活... 目录一、python-can 库:CAN 数据处理的利器二、BLF 文件合并核心代码解析1. 基础合

Python使用OpenCV实现获取视频时长的小工具

《Python使用OpenCV实现获取视频时长的小工具》在处理视频数据时,获取视频的时长是一项常见且基础的需求,本文将详细介绍如何使用Python和OpenCV获取视频时长,并对每一行代码进行深入解析... 目录一、代码实现二、代码解析1. 导入 OpenCV 库2. 定义获取视频时长的函数3. 打开视频文

Spring IoC 容器的使用详解(最新整理)

《SpringIoC容器的使用详解(最新整理)》文章介绍了Spring框架中的应用分层思想与IoC容器原理,通过分层解耦业务逻辑、数据访问等模块,IoC容器利用@Component注解管理Bean... 目录1. 应用分层2. IoC 的介绍3. IoC 容器的使用3.1. bean 的存储3.2. 方法注

Python内置函数之classmethod函数使用详解

《Python内置函数之classmethod函数使用详解》:本文主要介绍Python内置函数之classmethod函数使用方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地... 目录1. 类方法定义与基本语法2. 类方法 vs 实例方法 vs 静态方法3. 核心特性与用法(1编程客

Linux中压缩、网络传输与系统监控工具的使用完整指南

《Linux中压缩、网络传输与系统监控工具的使用完整指南》在Linux系统管理中,压缩与传输工具是数据备份和远程协作的桥梁,而系统监控工具则是保障服务器稳定运行的眼睛,下面小编就来和大家详细介绍一下它... 目录引言一、压缩与解压:数据存储与传输的优化核心1. zip/unzip:通用压缩格式的便捷操作2.

使用Python实现可恢复式多线程下载器

《使用Python实现可恢复式多线程下载器》在数字时代,大文件下载已成为日常操作,本文将手把手教你用Python打造专业级下载器,实现断点续传,多线程加速,速度限制等功能,感兴趣的小伙伴可以了解下... 目录一、智能续传:从崩溃边缘抢救进度二、多线程加速:榨干网络带宽三、速度控制:做网络的好邻居四、终端交互

Python中注释使用方法举例详解

《Python中注释使用方法举例详解》在Python编程语言中注释是必不可少的一部分,它有助于提高代码的可读性和维护性,:本文主要介绍Python中注释使用方法的相关资料,需要的朋友可以参考下... 目录一、前言二、什么是注释?示例:三、单行注释语法:以 China编程# 开头,后面的内容为注释内容示例:示例:四