C++——Traits编程技法

2023-12-05 07:38
文章标签 c++ 编程 traits 技法

本文主要是介绍C++——Traits编程技法,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

 

——这篇是直接根据侯捷老师的书写的,几乎没有自己加工的部分,不过也是学习的总结吧

Traits编程技法

按照顺序,这次应该是迭代器Iterator的内容了,然而Iterator涉及到一个重要的技巧就是Traits编程技法;它还是值得单独一章来介绍一下的。

一 获取Iterator的相应类型(associate type

在使用Iterator时,可能需要知道它的相应类型,也就是Iterator指向的变量的类型,在C/C++语言中,如果要获取一个变量的大小可以使用sizeof()操作符。然而如果想要获取一个指针指向的变量类型该如何做呢,可惜它没有一个typeof()操作符供我们程序员使用。

 

利用template的引数/参数推导(argument deducation)是一个解决问题的好方法,仅将func函数作为一个包装,而把实际的操作放在一个函数func_impl里面完成。一旦func()函数被调用,编译器就自动进行引数推导,自动导出类型T

 

template <class I>

inline void func(I iter)

{

    func_impl(iter, *iter); // 一层封装

}

 

template <class I, class T>

void func_impl(I iter, T t)

{

    T tmp; // 在本例中,t就是int类型

    tmp = t;

    cout<<tmp<<endl; // tmpint类型,可以直接输出

}

 

int main()

{

    int i = 4;

    func(&i);

    return 0;

}

 

看上去不错,虽然多了一层包装,但是还是可以工作的很好。好了,现在想想另一种情况,如果要将这个类型作为一个函数,比如上面的func的返回类型,该怎么办呢。毕竟引数推导导出的只是引数,没有办法应用于函数的返回值。看来我们需要另外的方法来解决这一问题,这就引出了本章的一个重要技巧Traits编程技法。

 

 Traits编程技法初见

采用nested type(巢状型别)似乎是个不错的注意,如下所示:

 

template <class T>

class Iterator

{

public:

    typedef T value_type;

    T *m_ptr;

    Iterator(T *p = 0) : m_ptr(p) {}

    T& operator *() const {return *m_ptr;}

    // ...

};

 

template <class I>

typename I::value_type func2(I iter)

{

    return *iter;

}

 

int main()

{

    int *p = new int(8);

    Iterator<int> iter(p);

    cout<<func2(iter)<<endl;

    delete p;

    return 0;

}

这里func2函数的返回值前加上了一个typename,这是因为在template T实例化之前,编译器对T一无所知,并不知道Iterator<int>::value_type代表的是一个函数,变量还是类型。关键字typename就是告诉编译器说这是一个类型,以使得编译通过。

看起来不错,但是这里还有一个隐晦的陷阱:并不是所有的迭代器都有value_type,编译器内嵌类型(原生指标)就没有,这样编译就不能通过,但是STL必须接受原生指标作为一种迭代器,这需要另外的技巧,它就是模板偏特化(template partial specialization

 

转载自:http://blog.csdn.net/sparkliang/archive/2009/03/20/4008096.aspx

 

补充:

 什么是C++ Traits? 并举例说明

首先假如有以下一个泛型的迭代器类,其中类型参数 T 为迭代器所指向的类型:

template
  <typename   T>
class   myIterator
{
 ...
};

当我们使用myIterator时,怎样才能获知它所指向的元素的类型呢?我们可以为这个类加入一个内嵌类型,像这样:
template   <typename   T>
class   myIterator
{
      
typedef  T value_type; 
...
};
这样当我们使用myIterator类型时,可以通过 myIterator::value_type来获得相应的myIterator所指向的类型。

现在我们来设计一个算法,使用这个信息。
template   <typename T>
typename
  myIterator<T>::value_type Foo(myIterator<T> i)
{
 ...
}
这里我们定义了一个函数Foo,它的返回为为  参数i 所指向的类型,也就是T,那么我们为什么还要兴师动众的使用那个value_type呢? 那是因为,当我们希望修改Foo函数,使它能够适应所有类型的迭代器时,我们可以这样写:
template   <typename I>   //这里的I可以是任意类型的迭代器
typename   I::value_type Foo(I i)
{
 ...
}
现在,任意定义了 value_type内嵌类型的迭代器都可以做为Foo的参数了,并且Foo的返回值的类型将与相应迭代器所指的元素的类型一致。至此一切问题似乎都已解决,我们并没有使用任何特殊的技术。然而当考虑到以下情况时,新的问题便显现出来了:

原生指针也完全可以做为迭代器来使用,然而我们显然没有办法为原生指针添加一个value_type的内嵌类型,如此一来我们的Foo()函数就不能适用原生指针了,这不能不说是一大缺憾。那么有什么办法可以解决这个问题呢? 此时便是我们的主角:类型信息榨取机 Traits 登场的时候了

我们可以不直接使用myIteratorvalue_type,而是通过另一个类来把这个信息提取出来:
template   <typename   T>
class Traits
{
      
typedef typename T::value_type value_type;
};

这样,我们可以通过 Traits<myIterator>::value_type 来获得myIteratorvalue_type,于是我们把Foo函数改写成:
template   <typename I>   //这里的I可以是任意类型的迭代器
typename   Traits<I>::value_type Foo(I i)
{
 ...
}
然而,即使这样,那个原生指针的问题仍然没有解决,因为Trait类一样没办法获得原生指针的相关信息。于是我们祭出C++的又一件利器--偏特化(partial specialization)
template   <typename   T>
class Traits<T*> 
//注意 这里针对原生指针进行了偏特化
{
      
typedef   typename   T value_type;
};
通过上面这个 Traits的偏特化版本,我们陈述了这样一个事实:一个 T* 类型的指针所指向的元素的类型为 T

如此一来,我们的 Foo函数就完全可以适用于原生指针了。比如:
int   * p;
....
int   i = Foo(p);
Traits
会自动推导出 p 所指元素的类型为 int,从而Foo正确返回。

 

这篇关于C++——Traits编程技法的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/456723

相关文章

【C++ Primer Plus习题】13.4

大家好,这里是国中之林! ❥前些天发现了一个巨牛的人工智能学习网站,通俗易懂,风趣幽默,忍不住分享一下给大家。点击跳转到网站。有兴趣的可以点点进去看看← 问题: 解答: main.cpp #include <iostream>#include "port.h"int main() {Port p1;Port p2("Abc", "Bcc", 30);std::cout <<

C++包装器

包装器 在 C++ 中,“包装器”通常指的是一种设计模式或编程技巧,用于封装其他代码或对象,使其更易于使用、管理或扩展。包装器的概念在编程中非常普遍,可以用于函数、类、库等多个方面。下面是几个常见的 “包装器” 类型: 1. 函数包装器 函数包装器用于封装一个或多个函数,使其接口更统一或更便于调用。例如,std::function 是一个通用的函数包装器,它可以存储任意可调用对象(函数、函数

C++11第三弹:lambda表达式 | 新的类功能 | 模板的可变参数

🌈个人主页: 南桥几晴秋 🌈C++专栏: 南桥谈C++ 🌈C语言专栏: C语言学习系列 🌈Linux学习专栏: 南桥谈Linux 🌈数据结构学习专栏: 数据结构杂谈 🌈数据库学习专栏: 南桥谈MySQL 🌈Qt学习专栏: 南桥谈Qt 🌈菜鸡代码练习: 练习随想记录 🌈git学习: 南桥谈Git 🌈🌈🌈🌈🌈🌈🌈🌈🌈🌈🌈🌈🌈�

【C++】_list常用方法解析及模拟实现

相信自己的力量,只要对自己始终保持信心,尽自己最大努力去完成任何事,就算事情最终结果是失败了,努力了也不留遗憾。💓💓💓 目录   ✨说在前面 🍋知识点一:什么是list? •🌰1.list的定义 •🌰2.list的基本特性 •🌰3.常用接口介绍 🍋知识点二:list常用接口 •🌰1.默认成员函数 🔥构造函数(⭐) 🔥析构函数 •🌰2.list对象

Linux 网络编程 --- 应用层

一、自定义协议和序列化反序列化 代码: 序列化反序列化实现网络版本计算器 二、HTTP协议 1、谈两个简单的预备知识 https://www.baidu.com/ --- 域名 --- 域名解析 --- IP地址 http的端口号为80端口,https的端口号为443 url为统一资源定位符。CSDNhttps://mp.csdn.net/mp_blog/creation/editor

【Python编程】Linux创建虚拟环境并配置与notebook相连接

1.创建 使用 venv 创建虚拟环境。例如,在当前目录下创建一个名为 myenv 的虚拟环境: python3 -m venv myenv 2.激活 激活虚拟环境使其成为当前终端会话的活动环境。运行: source myenv/bin/activate 3.与notebook连接 在虚拟环境中,使用 pip 安装 Jupyter 和 ipykernel: pip instal

06 C++Lambda表达式

lambda表达式的定义 没有显式模版形参的lambda表达式 [捕获] 前属性 (形参列表) 说明符 异常 后属性 尾随类型 约束 {函数体} 有显式模版形参的lambda表达式 [捕获] <模版形参> 模版约束 前属性 (形参列表) 说明符 异常 后属性 尾随类型 约束 {函数体} 含义 捕获:包含零个或者多个捕获符的逗号分隔列表 模板形参:用于泛型lambda提供个模板形参的名

6.1.数据结构-c/c++堆详解下篇(堆排序,TopK问题)

上篇:6.1.数据结构-c/c++模拟实现堆上篇(向下,上调整算法,建堆,增删数据)-CSDN博客 本章重点 1.使用堆来完成堆排序 2.使用堆解决TopK问题 目录 一.堆排序 1.1 思路 1.2 代码 1.3 简单测试 二.TopK问题 2.1 思路(求最小): 2.2 C语言代码(手写堆) 2.3 C++代码(使用优先级队列 priority_queue)

【C++高阶】C++类型转换全攻略:深入理解并高效应用

📝个人主页🌹:Eternity._ ⏩收录专栏⏪:C++ “ 登神长阶 ” 🤡往期回顾🤡:C++ 智能指针 🌹🌹期待您的关注 🌹🌹 ❀C++的类型转换 📒1. C语言中的类型转换📚2. C++强制类型转换⛰️static_cast🌞reinterpret_cast⭐const_cast🍁dynamic_cast 📜3. C++强制类型转换的原因📝

C++——stack、queue的实现及deque的介绍

目录 1.stack与queue的实现 1.1stack的实现  1.2 queue的实现 2.重温vector、list、stack、queue的介绍 2.1 STL标准库中stack和queue的底层结构  3.deque的简单介绍 3.1为什么选择deque作为stack和queue的底层默认容器  3.2 STL中对stack与queue的模拟实现 ①stack模拟实现