.NET8 依赖注入

2023-12-05 06:12
文章标签 依赖 注入 net8

本文主要是介绍.NET8 依赖注入,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

依赖注入(Dependency Injection,简称DI)是一种设计模式,用于解耦组件(服务)之间的依赖关系。它通过将依赖关系的创建和管理交给外部容器来实现,而不是在组件(服务)内部直接创建依赖对象。

​ 咱就是通过 IServiceCollection 和 IServiceProvider 来实现的,他们直接被收入到了runtime libraries,在整个.NET平台下通用!

3.1 ServiceCollection

​ IServiceCollection 本质是一个 ServiceDescriptor 而 ServiceDescriptor 则是用于描述服务类型,实现和生命周期

public interface IServiceCollection : IList<ServiceDescriptor>,ICollection<ServiceDescriptor>,IEnumerable<ServiceDescriptor>,IEnumerable;

​ 官方提供一些列拓展帮助我们向服务容器中添加服务描述,具体在 ServiceCollectionServiceExtensions

builder.Services.AddTransient<StudentService>();
builder.Services.AddKeyedTransient<IStudentRepository, StudentRepository>("a");
builder.Services.AddKeyedTransient<IStudentRepository, StudentRepository2>("b");
builder.Services.AddTransient<TransientService>();
builder.Services.AddScoped<ScopeService>();
builder.Services.AddSingleton<SingletonService>();

3.2 ServiceProvider

​ IServiceProvider 定义了一个方法 GetService,帮助我们通过给定的服务类型,获取其服务实例

public interface IServiceProvider
{object? GetService(Type serviceType);
}

​ 下面是 GetService 的默认实现(如果不给定engine scope,则默认是root)

public object? GetService(Type serviceType) => GetService(ServiceIdentifier.FromServiceType(serviceType), Root);

​ 也就是

internal object? GetService(ServiceIdentifier serviceIdentifier, ServiceProviderEngineScope serviceProviderEngineScope)
{if (_disposed){ThrowHelper.ThrowObjectDisposedException();}// 获取服务标识符对应的服务访问器ServiceAccessor serviceAccessor = _serviceAccessors.GetOrAdd(serviceIdentifier, _createServiceAccessor);// 执行解析时的hockOnResolve(serviceAccessor.CallSite, serviceProviderEngineScope);DependencyInjectionEventSource.Log.ServiceResolved(this, serviceIdentifier.ServiceType);// 通过服务访问器提供的解析服务,得到服务实例object? result = serviceAccessor.RealizedService?.Invoke(serviceProviderEngineScope);System.Diagnostics.Debug.Assert(result is null || CallSiteFactory.IsService(serviceIdentifier));return result;
}

​ 其中,服务标识符 ServiceIdentifier 其实就是包了一下服务类型,和服务Key(为了.NET8的键化服务)

internal readonly struct ServiceIdentifier : IEquatable<ServiceIdentifier>
{public object? ServiceKey { get; }public Type ServiceType { get; }
}

​ 显而易见的,我们的服务解析是由 serviceAccessor.RealizedService 提供,而创建服务访问器 serviceAccessor 只有一个实现 CreateServiceAccessor

private ServiceAccessor CreateServiceAccessor(ServiceIdentifier serviceIdentifier)
{// 通过 CallSiteFactory 获取服务的调用点(CallSite),这是服务解析的一个表示形式。ServiceCallSite? callSite = CallSiteFactory.GetCallSite(serviceIdentifier, new CallSiteChain());// 如果调用站点不为空,则继续构建服务访问器。if (callSite != null){DependencyInjectionEventSource.Log.CallSiteBuilt(this, serviceIdentifier.ServiceType, callSite);// 触发创建调用站点的相关事件。OnCreate(callSite);// 如果调用站点的缓存位置是根(Root),即表示这是一个单例服务。if (callSite.Cache.Location == CallSiteResultCacheLocation.Root){// 直接拿缓存内容object? value = CallSiteRuntimeResolver.Instance.Resolve(callSite, Root);return new ServiceAccessor { CallSite = callSite, RealizedService = scope => value };}// 通过引擎解析Func<ServiceProviderEngineScope, object?> realizedService = _engine.RealizeService(callSite);return new ServiceAccessor { CallSite = callSite, RealizedService = realizedService };}// 如果调用点为空,则它的实现服务函数总是返回 null。return new ServiceAccessor { CallSite = callSite, RealizedService = _ => null };
}
3.2.1 ServiceProviderEngine

​ ServiceProviderEngine 是服务商解析服务的执行引擎,它在服务商被初始化时建立。有两种引擎,分别是动态引擎运行时引擎,在 NETFRAMEWORK || NETSTANDARD2_0 默认使用动态引擎。

        private ServiceProviderEngine GetEngine(){ServiceProviderEngine engine;#if NETFRAMEWORK || NETSTANDARD2_0engine = CreateDynamicEngine();
#elseif (RuntimeFeature.IsDynamicCodeCompiled && !DisableDynamicEngine){engine = CreateDynamicEngine();}else{// Don't try to compile Expressions/IL if they are going to get interpretedengine = RuntimeServiceProviderEngine.Instance;}
#endifreturn engine;[UnconditionalSuppressMessage("AotAnalysis", "IL3050:RequiresDynamicCode",Justification = "CreateDynamicEngine won't be called when using NativeAOT.")] // see also https://github.com/dotnet/linker/issues/2715ServiceProviderEngine CreateDynamicEngine() => new DynamicServiceProviderEngine(this);}

​ 由于.NET Aot技术与dynamic技术冲突,因此Aot下只能使用运行时引擎,但动态引擎在大多情况下仍然是默认的。

动态引擎使用了emit技术,这是一个动态编译技术,而aot的所有代码都需要在部署前编译好,因此运行时无法生成新的代码。那运行时引擎主要使用反射,目标是在不牺牲太多性能的情况下,提供一个在aot环境中可行的解决方案。

​ 我们展开动态引擎来看看它是如何解析服务的。

public override Func<ServiceProviderEngineScope, object?> RealizeService(ServiceCallSite callSite)
{// 定义一个局部变量来跟踪委托被调用的次数int callCount = 0;return scope =>{// 当委托被调用时,先使用CallSiteRuntimeResolver.Instance.Resolve方法来解析服务。这是一个同步操作,确保在编译优化之前,服务可以被正常解析。var result = CallSiteRuntimeResolver.Instance.Resolve(callSite, scope);// 委托第二次被调用,通过UnsafeQueueUserWorkItem在后台线程上启动编译优化if (Interlocked.Increment(ref callCount) == 2){// 将一个工作项排队到线程池,但不捕获当前的执行上下文。_ = ThreadPool.UnsafeQueueUserWorkItem(_ =>{try{// 用编译优化后的委托替换当前的服务访问器,主要用到emit/expression技术_serviceProvider.ReplaceServiceAccessor(callSite, base.RealizeService(callSite));}catch (Exception ex){DependencyInjectionEventSource.Log.ServiceRealizationFailed(ex, _serviceProvider.GetHashCode());Debug.Fail($"We should never get exceptions from the background compilation.{Environment.NewLine}{ex}");}},null);}return result;};
}

这个实现的关键思想是,第一次解析服务时使用一个简单的运行时解析器,这样可以快速返回服务实例。然后,当服务再被解析,它会在后台线程上启动一个编译过程,生成一个更高效的服务解析委托。一旦编译完成,新的委托会替换掉原来的委托,以后的服务解析将使用这个新的、更高效的委托。这种方法可以在不影响应用程序启动时间的情况下,逐渐优化服务解析的性能。

3.2.2 ServiceProviderEngineScope

​ ServiceProviderEngineScope 闪亮登场,他是我们服务商的代言人,从定义不难看出他对外提供了服务商所具备的一切能力

internal sealed class ServiceProviderEngineScope : IServiceScope, IServiceProvider, IKeyedServiceProvider, 			IAsyncDisposable, IServiceScopeFactory
{// this scope中所有实现IDisposable or IAsyncDisposable的服务private List<object>? _disposables;// 解析过的服务缓存(其实就是scope生命周期的服务缓存,singleton生命周期的服务缓存都直接挂在调用点上了)internal Dictionary<ServiceCacheKey, object?> ResolvedServices { get; }// 实锤服务商代言人public IServiceProvider ServiceProvider => this;// 没错啦,通过root scope我们又能继续创建无数个scope,他们彼此独立public IServiceScope CreateScope() => RootProvider.CreateScope();
}

​ 我们来观察他获取服务的逻辑,可以发现他就是很朴实无华的用着我们根服务商 ServiceProvider,去解析服务,那 engine scope 呢,就是 this。现在我们已经隐约可以知道engine scope,就是为了满足scope生命周期而生。而 ResolvedServices 中存的呢,就是该scope中的所有scope生命周期服务实例啦,在这个scope中他们是唯一的。

public object? GetService(Type serviceType)
{if (_disposed){ThrowHelper.ThrowObjectDisposedException();}return RootProvider.GetService(ServiceIdentifier.FromServiceType(serviceType), this);
}

​ 再来看另一个核心的方法:CaptureDisposable,实现disposable的服务会被添加到 _disposables。

internal object? CaptureDisposable(object? service)
{// 如果服务没有实现 IDisposable or IAsyncDisposable,那么不需要捕获,直接原路返回if (ReferenceEquals(this, service) || !(service is IDisposable || service is IAsyncDisposable)){return service;}bool disposed = false;lock (Sync){if (_disposed) // 如果scope已经销毁则进入销毁流程{disposed = true;}else{_disposables ??= new List<object>();_disposables.Add(service);}}// Don't run customer code under the lockif (disposed) // 这表示我们在试图捕获可销毁服务时,scope就已经被销毁{if (service is IDisposable disposable){disposable.Dispose();}else{// sync over async, for the rare case that an object only implements IAsyncDisposable and may end up starving the thread pool.object? localService = service; // copy to avoid closure on other pathsTask.Run(() => ((IAsyncDisposable)localService).DisposeAsync().AsTask()).GetAwaiter().GetResult();}// 这种case会抛出一个ObjectDisposedExceptionThrowHelper.ThrowObjectDisposedException();}return service;
}

​ 在engine scope销毁时,其作用域中所有scope生命周期且实现了disposable的服务(其实就是_disposable)呢,也会被一同的销毁。

public ValueTask DisposeAsync()
{List<object>? toDispose = BeginDispose(); // 获取_disposableif (toDispose != null){// 从后往前,依次销毁服务}
}

​ 那么有同学可能就要问了:单例实例既然不存在root scope中,而是单独丢到了调用点上,那他是咋销毁的?压根没看到啊,那不得泄露了?

​ 其实呀,同学们并不用担心这个问题。首先,单例服务的实例确实是缓存在调用点上,但 disable 服务仍然会被 scope 捕获呀(在下文会详细介绍)。在 BeginDispose 中的,我们会去判断,如果是 singleton case,且root scope 没有被销毁过,我们会主动去销毁喔~

if (IsRootScope && !RootProvider.IsDisposed()) RootProvider.Dispose();

3.3 ServiceCallSite

​ ServiceCallSite 的主要职责是封装服务解析的逻辑,它可以代表一个构造函数调用、属性注入、工厂方法调用等。DI系统使用这个抽象来表示服务的各种解析策略,并且可以通过它来生成服务实例。

internal abstract class ServiceCallSite
{protected ServiceCallSite(ResultCache cache){Cache = cache;}public abstract Type ServiceType { get; }public abstract Type? ImplementationType { get; }public abstract CallSiteKind Kind { get; }public ResultCache Cache { get; }public object? Value { get; set; }public object? Key { get; set; }public bool CaptureDisposable => ImplementationType == null ||typeof(IDisposable).IsAssignableFrom(ImplementationType) ||typeof(IAsyncDisposable).IsAssignableFrom(ImplementationType);
}
3.3.1 ResultCache

​ 其中 ResultCache 定义了我们如何缓存解析后的结果

public CallSiteResultCacheLocation Location { get; set; } // 缓存位置
public ServiceCacheKey Key { get; set; } // 服务key(键化服务用的)

​ CallSiteResultCacheLocation 是一个枚举,定义了几个值

  1. Root:表示服务实例应该在根级别的 IServiceProvider 中缓存。这通常意味着服务实例是单例的(Singleton),在整个应用程序的生命周期内只会创建一次,并且在所有请求中共享。
  2. Scope:表示服务实例应该在当前作用域(Scope)中缓存。对于作用域服务(Scoped),实例会在每个作用域中创建一次,并在该作用域内的所有请求中共享。
  3. Dispose:尽管这个名称可能会让人误解,但在 ResultCache 的上下文中,Dispose 表示着服务是瞬态的(每次请求都创建新实例)。
  4. None:表示没有缓存服务实例。

​ ServiceCacheKey 结构体就是包了一下服务标识符和一个slot,用于适配多实现的

internal readonly struct ServiceCacheKey : IEquatable<ServiceCacheKey>
{public ServiceIdentifier ServiceIdentifier { get; }public int Slot { get; } // 那最后一个实现的slot是0
}
3.3.2 CallSiteFactory.GetCallSite

​ 那我们来看看调用点是怎么创建的吧,其实上面已经出现过一次了:

private ServiceCallSite? CreateCallSite(ServiceIdentifier serviceIdentifier, CallSiteChain callSiteChain)
{if (!_stackGuard.TryEnterOnCurrentStack()) // 防止栈溢出{return _stackGuard.RunOnEmptyStack(CreateCallSite, serviceIdentifier, callSiteChain);}// 获取服务标识符对应的锁,以确保在创建调用点时的线程安全。// 是为了保证并行解析下的调用点也只会被创建一次,例如:// C -> D -> A// E -> D -> Avar callsiteLock = _callSiteLocks.GetOrAdd(serviceIdentifier, static _ => new object());lock (callsiteLock){// 检查当前服务标识符是否会导致循环依赖callSiteChain.CheckCircularDependency(serviceIdentifier);// 首先尝试创建精确匹配的服务调用站点,如果失败,则尝试创建开放泛型服务调用站点,如果还是失败,则尝试创建枚举服务调用站点。如果所有尝试都失败了,callSite将为null。ServiceCallSite? callSite = TryCreateExact(serviceIdentifier, callSiteChain) ??TryCreateOpenGeneric(serviceIdentifier, callSiteChain) ??TryCreateEnumerable(serviceIdentifier, callSiteChain);return callSite;}
}

​ 那服务点的创建过程我就简单概述一下啦

  1. 查找调用点缓存,存在就直接返回啦
  2. 服务标识符会被转成服务描述符 ServiceDescriptor (key化服务不指定key默认取last)
  3. 计算ServiceCallSite,依次是:
    1. TryCreateExact
      1. 计算 ResultCache
      2. 如果已经有实现实例了,则返回 ConstantCallSite:表示直接返回已经创建的实例的调用点。
      3. 如果有实现工厂,则返回 FactoryCallSite:表示通过工厂方法创建服务实例的调用点。
      4. 如果有实现类型,则返回 ConstructorCallSite:表示通过构造函数创建服务实例的调用点。
    2. TryCreateOpenGeneric
      1. 根据泛型定义获取服务描述符 ServiceDescriptor
      2. 计算 ResultCache
      3. 使用服务标识符中的具体泛型参数来构造实现的闭合类型
      4. AOT兼容性测试(因为不能保证值类型泛型的代码已经生成)
      5. 如果成功闭合,则返回 ConstructorCallSite:表示通过构造函数创建服务实例的调用点。
    3. TryCreateEnumerable
      1. 确定类型是 IEnumerable<T>
      2. AOT兼容性测试(因为不能保证值类型数组的代码已经生成)
      3. 如果 T 不是泛型类型,并且可以找到对应的服务描述符集合,则循环 TryCreateExact
      4. 否则,方向循环 TryCreateExact,然后方向循环 TryCreateOpenGeneric

3.4 CallSiteVisitor

​ 好了,有了上面的了解我们可以开始探索服务解析的内幕了。服务解析说白了就是引擎围着 CallSiteVisitor 转圈圈,所谓的解析服务,其实就是访问调用点了。

protected virtual TResult VisitCallSite(ServiceCallSite callSite, TArgument argument)
{if (!_stackGuard.TryEnterOnCurrentStack()) // 一些校验,分栈啥的{return _stackGuard.RunOnEmptyStack(VisitCallSite, callSite, argument);}switch (callSite.Cache.Location){case CallSiteResultCacheLocation.Root: // 单例return VisitRootCache(callSite, argument);case CallSiteResultCacheLocation.Scope: // 作用域return VisitScopeCache(callSite, argument);case CallSiteResultCacheLocation.Dispose: // 瞬态return VisitDisposeCache(callSite, argument);case CallSiteResultCacheLocation.None: // 不缓存(ConstantCallSite)return VisitNoCache(callSite, argument);default:throw new ArgumentOutOfRangeException();}
}

​ 为了方便展示,我们这里的解析器都拿运行时来说,因为内部是反射,而emit、expression实在是难以观看。

3.4.1 VisitRootCache

​ 那我们来看看单例的情况下,是如何访问的:

protected override object? VisitRootCache(ServiceCallSite callSite, RuntimeResolverContext context)
{if (callSite.Value is object value){// Value already calculated, return it directlyreturn value;}var lockType = RuntimeResolverLock.Root;// 单例都是直接放根作用域的ServiceProviderEngineScope serviceProviderEngine = context.Scope.RootProvider.Root;lock (callSite){// 这里搞了个双检锁来确保在多线程环境中,同一时间只有一个线程可以执行接下来的代码块。// Lock the callsite and check if another thread already cached the valueif (callSite.Value is object callSiteValue){return callSiteValue;}object? resolved = VisitCallSiteMain(callSite, new RuntimeResolverContext{Scope = serviceProviderEngine,AcquiredLocks = context.AcquiredLocks | lockType});// 捕获可销毁的服务serviceProviderEngine.CaptureDisposable(resolved);// 缓存解析结果到调用点上callSite.Value = resolved;return resolved;}
}

​ 好,可以看到真正解析调用点的主角出来了 VisitCallSiteMain,那这里的 CallSiteKind 上面计算 ServiceCallSite 时呢已经讲的很清楚啦,咱对号入座就行了

protected virtual TResult VisitCallSiteMain(ServiceCallSite callSite, TArgument argument)
{switch (callSite.Kind){case CallSiteKind.Factory:return VisitFactory((FactoryCallSite)callSite, argument);case  CallSiteKind.IEnumerable:return VisitIEnumerable((IEnumerableCallSite)callSite, argument);case CallSiteKind.Constructor:return VisitConstructor((ConstructorCallSite)callSite, argument);case CallSiteKind.Constant:return VisitConstant((ConstantCallSite)callSite, argument);case CallSiteKind.ServiceProvider:return VisitServiceProvider((ServiceProviderCallSite)callSite, argument);default:throw new NotSupportedException(SR.Format(SR.CallSiteTypeNotSupported, callSite.GetType()));}
}

​ 我们就看看最经典的通过构造函数创建服务实例的调用点 ConstructorCallSite,很显然就是new嘛,只不过可能构造中依赖其它服务,那就递归创建呗。easy,其它几种太简单了大家自己去看看吧。

protected override object VisitConstructor(ConstructorCallSite constructorCallSite, RuntimeResolverContext context)
{object?[] parameterValues;if (constructorCallSite.ParameterCallSites.Length == 0){parameterValues = Array.Empty<object>();}else{parameterValues = new object?[constructorCallSite.ParameterCallSites.Length];for (int index = 0; index < parameterValues.Length; index++){// 递归构建依赖的服务parameterValues[index] = VisitCallSite(constructorCallSite.ParameterCallSites[index], context);}}// new (xxx)return constructorCallSite.ConstructorInfo.Invoke(BindingFlags.DoNotWrapExceptions, binder: null, parameters: parameterValues, culture: null);
}
3.4.2 VisitScopeCache

​ 在访问单例缓存的时候呢,仅仅通过了一个double check lock就搞定了,因为人家全局的嘛,咱再来看看访问作用域缓存,会不会有什么不一样

protected override object? VisitScopeCache(ServiceCallSite callSite, RuntimeResolverContext context)
{// Check if we are in the situation where scoped service was promoted to singleton// and we need to lock the rootreturn context.Scope.IsRootScope ?VisitRootCache(callSite, context) :VisitCache(callSite, context, context.Scope, RuntimeResolverLock.Scope);
}

​ 哈哈,它果然很不一般啊,上来就来检查我们是否是 root scope。如果是这种case呢,则走 VisitRootCache。但是奇怪啊,为什么访问 scope cache,所在 engine scope 能是 root scope?

​ 还记得 ServiceProvider 获取的服务实例的核心方法吗?engine scope 他是传进来的,如果我们给一个 root scope,自然就出现的这种case,只是这种 case 特别罕见。

internal object? GetService(ServiceIdentifier serviceIdentifier, ServiceProviderEngineScope serviceProviderEngineScope)

​ VisitCache 的同步模型写的实在是酷,我们看 RuntimeResolverLock 的枚举就两个:Scope = 1 和 Root = 2

  • AcquiredLocks=Scope时

  • 那 AcquiredLocks&false==0 显然成立,申请锁,也就是尝试独占改作用域的ResolvedServices

  • 申请成功进入同步块,重新计算AcquiredLocks|true=1

  • 如此,在该engine scope 中这条链路上的调用点都被占有,直到结束

  • AcquiredLocks=Root 时

    • 那显然 engine scope 也应该是 root scope,那么走 VisitRootCache case
    • 在 VisitRootCache 通过DCL锁住 root scope 上链路涉及的服务点,直至结束

​ 至此我们应该不难看出这个设计的精妙之处,即在非 root scope(scope生命周期)中,scope之间是互相隔离的,没有必要像 root scope(singleton生命周期)那样,在所有scope中独占服务点。

private object? VisitCache(ServiceCallSite callSite, RuntimeResolverContext context, ServiceProviderEngineScope serviceProviderEngine
{bool lockTaken = false;object sync = serviceProviderEngine.Sync;Dictionary<ServiceCacheKey, object?> resolvedServices = serviceProviderEngine.ResolvedServices;if ((context.AcquiredLocks & lockType) == 0){Monitor.Enter(sync, ref lockTaken);}try{// Note: This method has already taken lock by the caller for resolution and access synchronization.// For scoped: takes a dictionary as both a resolution lock and a dictionary access lock.if (resolvedServices.TryGetValue(callSite.Cache.Key, out object? resolved)){return resolved;}// scope服务的解析结果是放在engine scope的ResolvedServices上的,而非调用点resolved = VisitCallSiteMain(callSite, new RuntimeResolverContext{Scope = serviceProviderEngine,AcquiredLocks = context.AcquiredLocks | lockType});serviceProviderEngine.CaptureDisposable(resolved);resolvedServices.Add(callSite.Cache.Key, resolved);return resolved;}finally{if (lockTaken){Monitor.Exit(sync);}}
}
3.4.3 VisitDisposeCache

​ 我们看最后一个,也就是 Transient case

protected override object? VisitDisposeCache(ServiceCallSite transientCallSite, RuntimeResolverContext context)
{return context.Scope.CaptureDisposable(VisitCallSiteMain(transientCallSite, context));
}

​ 异常的简单,我们沿用了scope的设计,但是我们没有进行任何缓存行为。即,每次都去访问调用点。

这篇关于.NET8 依赖注入的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/456463

相关文章

Spring核心思想之浅谈IoC容器与依赖倒置(DI)

《Spring核心思想之浅谈IoC容器与依赖倒置(DI)》文章介绍了Spring的IoC和DI机制,以及MyBatis的动态代理,通过注解和反射,Spring能够自动管理对象的创建和依赖注入,而MyB... 目录一、控制反转 IoC二、依赖倒置 DI1. 详细概念2. Spring 中 DI 的实现原理三、

python中poetry安装依赖

《python中poetry安装依赖》本文主要介绍了Poetry工具及其在Python项目中的安装和使用,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随... 目录前言1. 为什么pip install poetry 会造成依赖冲突1.1 全局环境依赖混淆:1

每天认识几个maven依赖(ActiveMQ+activemq-jaxb+activesoap+activespace+adarwin)

八、ActiveMQ 1、是什么? ActiveMQ 是一个开源的消息中间件(Message Broker),由 Apache 软件基金会开发和维护。它实现了 Java 消息服务(Java Message Service, JMS)规范,并支持多种消息传递协议,包括 AMQP、MQTT 和 OpenWire 等。 2、有什么用? 可靠性:ActiveMQ 提供了消息持久性和事务支持,确保消

pip-tools:打造可重复、可控的 Python 开发环境,解决依赖关系,让代码更稳定

在 Python 开发中,管理依赖关系是一项繁琐且容易出错的任务。手动更新依赖版本、处理冲突、确保一致性等等,都可能让开发者感到头疼。而 pip-tools 为开发者提供了一套稳定可靠的解决方案。 什么是 pip-tools? pip-tools 是一组命令行工具,旨在简化 Python 依赖关系的管理,确保项目环境的稳定性和可重复性。它主要包含两个核心工具:pip-compile 和 pip

深入理解数据库的 4NF:多值依赖与消除数据异常

在数据库设计中, "范式" 是一个常常被提到的重要概念。许多初学者在学习数据库设计时,经常听到第一范式(1NF)、第二范式(2NF)、第三范式(3NF)以及 BCNF(Boyce-Codd范式)。这些范式都旨在通过消除数据冗余和异常来优化数据库结构。然而,当我们谈到 4NF(第四范式)时,事情变得更加复杂。本文将带你深入了解 多值依赖 和 4NF,帮助你在数据库设计中消除更高级别的异常。 什么是

PHP防止SQL注入详解及防范

SQL 注入是PHP应用中最常见的漏洞之一。事实上令人惊奇的是,开发者要同时犯两个错误才会引发一个SQL注入漏洞。 一个是没有对输入的数据进行过滤(过滤输入),还有一个是没有对发送到数据库的数据进行转义(转义输出)。这两个重要的步骤缺一不可,需要同时加以特别关注以减少程序错误。 对于攻击者来说,进行SQL注入攻击需要思考和试验,对数据库方案进行有根有据的推理非常有必要(当然假设攻击者看不到你的

PHP防止SQL注入的方法(2)

如果用户输入的是直接插入到一个SQL语句中的查询,应用程序会很容易受到SQL注入,例如下面的例子: $unsafe_variable = $_POST['user_input'];mysql_query("INSERT INTO table (column) VALUES ('" . $unsafe_variable . "')"); 这是因为用户可以输入类似VALUE”); DROP TA

PHP防止SQL注入的方法(1)

(1)mysql_real_escape_string – 转义 SQL 语句中使用的字符串中的特殊字符,并考虑到连接的当前字符集 使用方法如下: $sql = "select count(*) as ctr from users where username ='".mysql_real_escape_string($username)."' and password='". mysql_r

PHP7扩展开发之依赖其他扩展

前言 有的时候,我们的扩展要依赖其他扩展。比如,我们PHP的mysqli扩展就依赖mysqlnd扩展。这中情况下,我们怎么使用其他扩展呢?这个就是本文讲述的内容。 我们新建立一个扩展,名字叫 demo_dep , 依赖之前的say扩展。 在demo_dep扩展中,我们实现demo_say方法。这个方法调用say扩展的say方法。 代码 基础代码 确保say扩展的头文件正确安装到了php

Go 依赖注入库dig

简介 今天我们来介绍 Go 语言的一个依赖注入(DI)库——dig。dig 是 uber 开源的库。Java 依赖注入的库有很多,相信即使不是做 Java 开发的童鞋也听过大名鼎鼎的 Spring。相比庞大的 Spring,dig 很小巧,实现和使用都比较简洁。 快速使用 第三方库需要先安装,由于我们的示例中使用了前面介绍的go-ini和go-flags,这两个库也需要安装: $ go g