20:kotlin 类和对象 --泛型(Generics)

2023-12-05 03:52
文章标签 对象 kotlin 20 泛型 generics

本文主要是介绍20:kotlin 类和对象 --泛型(Generics),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

类可以有类型参数

class Box<T>(t: T) {var value = t
}

要创建类实例,需提供类型参数

val box: Box<Int> = Box<Int>(1)

如果类型可以被推断出来,可以省略

val box = Box(1)

通配符

在JAVA泛型中有通配符?? extends E? super E,在kotlin中没有这个概念,取而代之的是Declaration-site variancetype projections

Declaration-site variance

out 协变

对于如下代码

interface Source<T> {fun next():T
}fun demo(x : Source<Number>){val objects: Source<Any> = x
}

编译器报错 – 类型不匹配
在这里插入图片描述

想要代码成立需要在泛型定义时使用out

interface Source<T> {fun next():T
}fun demo(x : Source<Number>){val objects: Source<Any> = x
}

in 逆变

对于代码

interface Comparable<T> {operator fun compareTo(other: T): Int
}fun demo(x: Comparable<Number>) {x.compareTo(1.0)val y: Comparable<Int> = x
}

报错类型不匹配
在这里插入图片描述
想要代码成立需要在泛型定义时使用in

interface Comparable<in T> {operator fun compareTo(other: T): Int
}fun demo(x: Comparable<Number>) {x.compareTo(1.0)val y: Comparable<Int> = x
}

如果T类型作为参数(消费)就是用in,如果作为返回值(生产)就用out
Consumer in, Producer out!
逆变就是大类型变小类型,协变就是小类型变大类型

type projections(类型投影)

Use-site variance: type projections(使用点位变异:类型投影)

对于以下代码

class Demo<T>{fun copy(from: Array<T>, to: Array<T>) {assert(from.size == from.size)for (i in from.indices) {to[i] = from.get(i)}}
}fun main() {val str: Array<String> = arrayOf("hello", "world")val obj: Array<Any> = arrayOf(123, 432)Demo<Any>().copy(str, obj)
}

报错
在这里插入图片描述
在类声明时,不管是使用class Demo<in T>还是class Demo<out T>都会报错,为解决这种情况,可以修改copy方法的from参数类型为from: Array<out T>,因为from作为生产者,生产数组中的值

class Demo<T>{fun copy(from: Array<out T>, to: Array<T>) {assert(from.size == from.size)for (i in from.indices) {to[i] = from.get(i)}}
}

当然也可以改成下边写法

class Demo<T>{fun copy(from: Array<T>, to: Array<in T>) {assert(from.size == from.size)for (i in from.indices) {to[i] = from.get(i)}}
}fun main() {val str: Array<String> = arrayOf("hello", "world")val obj: Array<Any> = arrayOf(123, 432)Demo<String>().copy(str, obj)
}

星号投影(*)

有时候参数是一个泛型类型,但是在定义方法的时候不能确定泛型的具体类型,需要用到*投影
语法如下

  • 对于泛型类型Foo<out T : TUpper>T是一个具有上界TUpper的协变类型参数,Foo<*>等价于Foo<out TUpper>。这意味着当T未知时,你可以安全地从Foo<*>中读取TUpper的值。
  • 对于泛型类型Foo<in T>T是一个逆变类型参数,Foo<*>等价于Foo<in Nothing>。这意味着当T未知时,你无法以安全的方式向Foo<*>写入任何值。
  • 对于泛型类型Foo<T : TUpper>T是一个不变类型参数,具有上界TUpperFoo<*>在读取值时等价于Foo<out TUpper>,在写入值时等价于Foo<in Nothing>

举个例子

class Box<out T : Any>(private val value: T) {fun getValue(): T {return value}
}fun printBoxValue(box: Box<*>) {val value = box.getValue()println(value)
}fun main(){printBoxValue(Box(123)) // 123printBoxValue(Box("hello world"))   // hello world
}

printBoxValue方法的参数使用*投影

如果一个泛型类型有多个类型参数,每个参数可以独立进行投影

泛型函数

不仅类可以有类型参数,函数也可以有类型参数。类型参数位于函数名称之前

fun <T> singletonList(item: T): List<T> {// ...
}fun <T> T.basicToString(): String { // 扩展函数// ...
}

要调用泛型函数,在调用点的函数名称之后指定类型参数

val l = singletonList<Int>(1)

如果可以从上下文中推断出类型参数,则可以省略类型参数

val l = singletonList(1)

泛型约束

对于给定的类型参数,可以通过泛型约束来限制可替代的所有可能类型。

最常见的约束类型是上界(upper bounds)

fun <T : Comparable<T>> sort(list: List<T>) {  ... }

在冒号后指定的类型是上界,表示只有Comparable<T>的子类型可以替代T

sort(listOf(1, 2, 3)) // 正确。Int是Comparable<Int>的子类型
sort(listOf(HashMap<Int, String>())) // 错误:HashMap<Int, String>不是Comparable<HashMap<Int, String>>的子类型

如果不指定上界,则默认为Any?类型的

当一个类型参数需要满足多个上界时,需要使用 where 子句来指定这些上界条件

fun <T> processValues(list: List<T>) where T : CharSequence, T : Comparable<T> {val sortedValues = list.sorted()for (value in sortedValues) {println(value)}
}val stringList: List<String> = listOf("apple", "banana", "cherry")
val intList: List<Int> = listOf(1, 2, 3)
val mixedList: List<Any> = listOf("hello", 42, true)processValues(stringList) // apple, banana, cherry
processValues(intList) // 报错 -- Int 不满足 CharSequence 的上界
processValues(mixedList) // 报错 --Any 不满足 CharSequence 的上界

绝对非空类型(Definitely non-nullable types)

为了方便和java接口和类交互,如果有如下java接口

import org.jetbrains.annotations.*;public interface Game<T> {public T save(T x) {}@NotNullpublic T load(@NotNull T x) {}
}

要继承该接口并重写load方法,使用& Any来声明一个非空参数

interface ArcadeGame<T1> : Game<T1> {override fun save(x: T1): T1// T1 is definitely non-nullableoverride fun load(x: T1 & Any): T1 & Any
}

如果是纯kotlin项目,不需要使用此方法声明,kotlin的类型推断会做这件事

class ArcadeGame<T> {fun load(x: T & Any){println(x)}
}fun main(){ArcadeGame<String?>().load(null)    // 这里String?即使可以为空,调用load方法时传入null依旧报错
}

类型擦除

kotlin对泛型声明的类型安全检查是在编译时进行的。在运行时,泛型类型的实例不保存有关其实际类型参数的任何信息。这种类型信息被称为擦除。例如,Foo<Bar>Foo<Baz?> 的实例在擦除后变为 Foo<*>

泛型类型的检查和转换

由于类型擦除的存在,不能使用is进行如下检查

class ArcadeGame<T>{fun check(x:Any){if (x is T){}   // 报错 -- Cannot check for instance of erased type: T}
}fun main() {val game = ArcadeGame<String?>()if (game is ArcadeGame<String>) {} // 报错 -- Cannot check for instance of erased type: ArcadeGame<String>
}

可以使用型号投影进行检查

class ArcadeGame<T>fun main() {val game = ArcadeGame<String?>()if (game is ArcadeGame<*>) {} 
}

对于x is T这种检查方式,可以进行如下改造

class ArcadeGame<T>(private val type: Class<T>) {fun check(x: Any) {if (type.isInstance(x)) {// x 是 T 类型的实例}}
}fun main() {val game = ArcadeGame<String>(String::class.java)
}

The type arguments of generic function calls are also only checked at compile time. Inside the function bodies, the type parameters cannot be used for type checks, and type casts to type parameters (foo as T) are unchecked. The only exclusion is inline functions with reified type parameters, which have their actual type arguments inlined at each call site. This enables type checks and casts for the type parameters. However, the restrictions described above still apply for instances of generic types used inside checks or casts. For example, in the type check arg is T, if arg is an instance of a generic type itself, its type arguments are still erased.

inline fun <reified A, reified B> Pair<*, *>.asPairOf(): Pair<A, B>? {if (first !is A || second !is B) return nullreturn first as A to second as B
}val somePair: Pair<Any?, Any?> = "items" to listOf(1, 2, 3)val stringToSomething = somePair.asPairOf<String, Any>()
val stringToInt = somePair.asPairOf<String, Int>()
val stringToList = somePair.asPairOf<String, List<*>>()
val stringToStringList = somePair.asPairOf<String, List<String>>() // Compiles but breaks type safety!
// Expand the sample for more details

未经检查的类型转换(Unchecked casts)

对于泛型类型转换,无法在运行时进行检查。

fun gen(): Map<String, *> {return mapOf("one" to "你好", "two" to 123)
}fun main() {val gen = gen()gen as Map<Int, Int>	// 提示 -- Unchecked cast: Map<String, *> to Map<Int, Int>println(gen)	// {one=你好, two=123}
}

因为类型擦除的缘故,gen as Map<Int, Int>并不会报错,只是在编译期做出提醒

如果是这样转换则会报错

fun main() {val gen = gen()gen["one"] as Int   // 报错 -- java.lang.ClassCastException: class java.lang.String cannot be cast to class java.lang.Integer (java.lang.String and java.lang.Integer are in module java.base of loader 'bootstrap')println(gen)
}

如果不想提示,使用注解@Suppress("UNCHECKED_CAST")

fun main() {val gen = gen()@Suppress("UNCHECKED_CAST")gen as Map<Int, Int>println(gen)
}

JVM上,数组类型保留有关其元素被擦除的类型的信息,并且对数组类型的类型转换进行了部分检查:元素类型的可为空性和实际类型参数仍然被擦除。

fun gen(): Array<*> {return arrayOf("hello", "world")
}fun main() {val gen = gen()gen as Array<Int>   //  java.lang.ClassCastException: class [Ljava.lang.String; cannot be cast to class [Ljava.lang.Integer; ([Ljava.lang.String; and [Ljava.lang.Integer; are in module java.base of loader 'bootstrap')println(gen)
}

类型参数的下划线操作符

当其他类型被显式指定时,可以使用下划线操作符来自动推断参数的类型

abstract class SomeClass<T> {abstract fun execute() : T
}class SomeImplementation : SomeClass<String>() {override fun execute(): String = "Test"
}class OtherImplementation : SomeClass<Int>() {override fun execute(): Int = 42
}object Runner {inline fun <reified S: SomeClass<T>, T> run() : T {return S::class.java.getDeclaredConstructor().newInstance().execute()}
}fun main() {// T 是 String 类型,因为SomeImplementation为SomeClass<String>val s = Runner.run<SomeImplementation, _>()assert(s == "Test")// T 是 Int 类型 ,因为SomeImplementation为SomeClass<Int>val n = Runner.run<OtherImplementation, _>()assert(n == 42)
}

这篇关于20:kotlin 类和对象 --泛型(Generics)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/456042

相关文章

系统架构师考试学习笔记第三篇——架构设计高级知识(20)通信系统架构设计理论与实践

本章知识考点:         第20课时主要学习通信系统架构设计的理论和工作中的实践。根据新版考试大纲,本课时知识点会涉及案例分析题(25分),而在历年考试中,案例题对该部分内容的考查并不多,虽在综合知识选择题目中经常考查,但分值也不高。本课时内容侧重于对知识点的记忆和理解,按照以往的出题规律,通信系统架构设计基础知识点多来源于教材内的基础网络设备、网络架构和教材外最新时事热点技术。本课时知识

【C++学习笔记 20】C++中的智能指针

智能指针的功能 在上一篇笔记提到了在栈和堆上创建变量的区别,使用new关键字创建变量时,需要搭配delete关键字销毁变量。而智能指针的作用就是调用new分配内存时,不必自己去调用delete,甚至不用调用new。 智能指针实际上就是对原始指针的包装。 unique_ptr 最简单的智能指针,是一种作用域指针,意思是当指针超出该作用域时,会自动调用delete。它名为unique的原因是这个

Java第二阶段---09类和对象---第三节 构造方法

第三节 构造方法 1.概念 构造方法是一种特殊的方法,主要用于创建对象以及完成对象的属性初始化操作。构造方法不能被对象调用。 2.语法 //[]中内容可有可无 访问修饰符 类名([参数列表]){ } 3.示例 public class Car {     //车特征(属性)     public String name;//车名   可以直接拿来用 说明它有初始值     pu

【JavaScript】LeetCode:16-20

文章目录 16 无重复字符的最长字串17 找到字符串中所有字母异位词18 和为K的子数组19 滑动窗口最大值20 最小覆盖字串 16 无重复字符的最长字串 滑动窗口 + 哈希表这里用哈希集合Set()实现。左指针i,右指针j,从头遍历数组,若j指针指向的元素不在set中,则加入该元素,否则更新结果res,删除集合中i指针指向的元素,进入下一轮循环。 /*** @param

HTML5自定义属性对象Dataset

原文转自HTML5自定义属性对象Dataset简介 一、html5 自定义属性介绍 之前翻译的“你必须知道的28个HTML5特征、窍门和技术”一文中对于HTML5中自定义合法属性data-已经做过些介绍,就是在HTML5中我们可以使用data-前缀设置我们需要的自定义属性,来进行一些数据的存放,例如我们要在一个文字按钮上存放相对应的id: <a href="javascript:" d

PHP7扩展开发之对象方式使用lib库

前言 上一篇文章,我们使用的是函数方式调用lib库。这篇文章我们将使用对象的方式调用lib库。调用代码如下: <?php $hello = new hello(); $result = $hello->get(); var_dump($result); ?> 我们将在扩展中实现hello类。hello类中将依赖lib库。 代码 基础代码 这个扩展,我们将在say扩展上增加相关代码。sa

hibernate修改数据库已有的对象【简化操作】

陈科肇 直接上代码: /*** 更新新的数据并并未修改旧的数据* @param oldEntity 数据库存在的实体* @param newEntity 更改后的实体* @throws IllegalAccessException * @throws IllegalArgumentException */public void updateNew(T oldEntity,T newEntity

Java泛型类型解析

解析泛型类型 获取字段泛型类型 **java.lang.reflect.Field#getGenericType**: 作用:返回字段的泛型类型。返回类型:Type。如果字段是一个泛型类型,这个方法将返回一个表示这个泛型类型的 Type 对象,比如 ParameterizedType,TypeVariable 等等。如果字段不是泛型类型,这个方法将返回字段的具体类型,即 Class 对象。示例

类和对象的定义和调用演示(C++)

我习惯把类的定义放在头文件中 Student.h #define _CRT_SECURE_NO_WARNINGS#include <string>using namespace std;class student{public:char m_name[25];int m_age;int m_score;char* get_name(){return m_name;}int set_name

react笔记 8-19 事件对象、获取dom元素、双向绑定

1、事件对象event 通过事件的event对象获取它的dom元素 run=(event)=>{event.target.style="background:yellowgreen" //event的父级为他本身event.target.getAttribute("aid") //这样便获取到了它的自定义属性aid}render() {return (<div><h2>{