回溯法及例题(C++实现)

2023-12-05 00:04
文章标签 c++ 实现 例题 回溯 法及

本文主要是介绍回溯法及例题(C++实现),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

回溯法概念

概念:在包含问题所有解的解空间树中,按照深度优先搜索的策略,根据根结点(开始节点)出发搜索解空间树。

流程:首先根结点成为活节点,同时也成为当前的扩展结点。在当前的扩展结点处,搜索向纵深方向移至一个新结点。这个新结点就成为新的活结点,并成为当前的扩展结点。如果在当前的扩展结点处不能再向纵向方向移动,则当前扩展结点就成为死结点。此时应往回移动(回溯)至最近的一个活结点处,并使这个活结点成为当前的扩展结点。回溯法以这种方式递归的在解空间中搜索,直到找到所要求的解或解空间中已无活结点为止

活结点(active node):指自身已生成但其孩子结点没有全部生成的结点

扩展节点(expansion node):指正在产生孩子结点的结点,也称E结点

死结点(dead node):指其所有子结点均已生产的结点

保存结点的解:回溯法求解时存在退回到祖先结点的过程,所以需要保存搜索过的结点。通常有两种方法,其一是用自定义栈来保存祖先结点;其二是采用递归方法,因为递归调用会将祖先结点保存到系统栈中,在递归调用返回时自动回退到祖先结点。

避免无效搜索:回溯法搜索解空间时通常采用两种策略避免无效搜索,以提高回溯的搜索效率,一是用约束函数在扩展结点处剪除不满足约束条件的路径,二是用限界函数减去得不到问题解或最优解的路径,这两类函数统称为剪枝函数。

回溯法的解题步骤

  1. 针对给定的问题确定问题的解空间树,问题的解空间树应至少包含问题的一个解或最优解。
  2. 确定结点的扩展搜索规则
  3. 以深度优先方式搜索解空间树,并在搜索过程中采用剪枝函数来便面无效搜索。其中,深度优先方式可以选择递归回溯或者迭代(非递归)回溯

回溯算法与深度优先遍历的异同

  1. 访问次序不同
  2. 访问次数不同
  3. 剪枝不同

(1)访问次序不同:深度优先遍历的目的是“遍历”,本质是无序的,也就是说访问次序不重要,重要的是否被访问过(实现上只需要对于每个位置记录是否被访问就足够)。回溯法的目的是“求解过程”,本质是有序的,也就是说每一步都是要求的次序(实现上要使用访问状态来记录,也就是对于每个顶点记录以及访问过的邻居方向,回溯之后从新的未访问过的方向去访问其他邻居)。

(2)访问次序不同:深度优先遍历对已经访问过的顶点不再访问,所有顶点仅访问一次。回溯法中已经访问过的顶点可能再次访问

(3)剪枝不同:深度优先遍历不含剪枝,而很多回溯法会采用剪枝条件剪除不必要的分支以提高效能

回溯法的时间分析

时间分析依据:解空间树中的结点数

假设:解空间树共有n层,第一层有m0个满足约束条件的结点,每个结点有m1个满足约束条件的结点,则第二层有m0m1(m2)个满足约束条件的结点,同理,第三层有m0m1m2个满足约束条件的结点......

执行时间:T(n)=m0+m0m1+m0m1m2+m0m1m2m3+....+m0m1m2...(mn-1)

时间复杂度:

  1. 解空间树为子集树时:O(2^n)
  2. 解空间树为排列树时:O(n!)

1、N皇后问题

八皇后问题是回溯算法的典型例题。该问题是十九世纪著名的数学家高斯1850年提出:在8X8格的国际象棋上摆放八个皇后,使其不能互相攻击,即任意两个皇后都不能处于同一行、同一列或同一斜率为1的斜线上,问有多少种摆法?(每一行应有一个皇后)

解决思路:

  1. 解决皇后在棋盘上的攻击范围
  2. 递归处理完成深度优先搜索并回溯过程
  3. 进行调用的函数

put_queen函数:使用一个attack数组来存放皇后的攻击范围,1为不可放置区域,0为安全区域。dx与dy数组组合完成对八个方向的扩展,if判断语句来控制范围始终处于棋盘中

void put_queen(int x,int y,vector<vector<int>> &attack) {static const int dx[] = {-1,1,0,0,-1,-1,1,1 };static const int dy[] = { 0,0,-1,1,-1,1,-1,1 };attack[x][y] = 1;//皇后位置取值为1for (int i = 0; i < attack.size(); i++) {for (int j = 0; j < 8; j++){int nx = x + i * dx[j];int ny = y + i * dy[j];if (nx >= 0 && nx < attack.size() && ny >= 0 && ny < attack.size()) {attack[nx][ny] = 1;}}}
}

backtrack函数:当皇后放置完后,k溢出进行存储入solve数组操作,核心思想为下一层无无位置时进行回溯

void backtrack(int k,int n,vector<string> &queen,vector<vector<int>> &attack,vector<vector<string>> &solve){//k:表示当前处理的行数//n:表示N皇后问题//queen:存储皇后的位置//attack:标记皇后的攻击范围//solve:存储N皇后的解法if (k == n) {solve.push_back(queen);return;}//遍历for (int i = 0; i < n; i++) {if (attack[k][i] == 0) {vector<vector<int>> tmp = attack;//备份attack数组queen[k][i] = 'Q';put_queen(k, i, attack);//更新attack数组backtrack(k + 1, n, queen, attack, solve);//递归试探k+1行皇后位置attack = tmp;//恢复attack数组queen[k][i] = '.';//恢复queen数组}}
}

solveQueens函数:定义attack棋盘、solve解法保存数组、queen摆放方案,循环初始化数组

vector<vector<string>> solveQueens(int n) {vector<vector<string>> solve;vector<vector<int>> attack;vector<string> queen;//使用循环初始化attack和queen数组for (int i = 0; i < n; i++) {attack.push_back(std::vector<int>());for (int j = 0; j < n; j++) {attack[i].push_back(0);}queen.push_back("");queen[i].append(n, '.');}backtrack(0, n, queen, attack, solve);return solve;
}

主函数

int main() {ios::sync_with_stdio(false);cin.tie(0), cout.tie(0);vector<vector<string>> result;result = solveQueens(8);//8皇后问题cout << "8皇后共有" << result.size() << "种解法" << endl;for (int i = 0; i < result.size(); i++) {cout << "解法" << i+1 << ":\n" << endl;for (int j = 0; j < result[i].size(); j++) {cout << result[i][j].c_str() << "\n" << endl;}cout << "\n" << endl;}return 0;
}

这篇关于回溯法及例题(C++实现)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/455380

相关文章

使用Java解析JSON数据并提取特定字段的实现步骤(以提取mailNo为例)

《使用Java解析JSON数据并提取特定字段的实现步骤(以提取mailNo为例)》在现代软件开发中,处理JSON数据是一项非常常见的任务,无论是从API接口获取数据,还是将数据存储为JSON格式,解析... 目录1. 背景介绍1.1 jsON简介1.2 实际案例2. 准备工作2.1 环境搭建2.1.1 添加

Java实现任务管理器性能网络监控数据的方法详解

《Java实现任务管理器性能网络监控数据的方法详解》在现代操作系统中,任务管理器是一个非常重要的工具,用于监控和管理计算机的运行状态,包括CPU使用率、内存占用等,对于开发者和系统管理员来说,了解这些... 目录引言一、背景知识二、准备工作1. Maven依赖2. Gradle依赖三、代码实现四、代码详解五

java如何分布式锁实现和选型

《java如何分布式锁实现和选型》文章介绍了分布式锁的重要性以及在分布式系统中常见的问题和需求,它详细阐述了如何使用分布式锁来确保数据的一致性和系统的高可用性,文章还提供了基于数据库、Redis和Zo... 目录引言:分布式锁的重要性与分布式系统中的常见问题和需求分布式锁的重要性分布式系统中常见的问题和需求

SpringBoot基于MyBatis-Plus实现Lambda Query查询的示例代码

《SpringBoot基于MyBatis-Plus实现LambdaQuery查询的示例代码》MyBatis-Plus是MyBatis的增强工具,简化了数据库操作,并提高了开发效率,它提供了多种查询方... 目录引言基础环境配置依赖配置(Maven)application.yml 配置表结构设计demo_st

python使用watchdog实现文件资源监控

《python使用watchdog实现文件资源监控》watchdog支持跨平台文件资源监控,可以检测指定文件夹下文件及文件夹变动,下面我们来看看Python如何使用watchdog实现文件资源监控吧... python文件监控库watchdogs简介随着Python在各种应用领域中的广泛使用,其生态环境也

el-select下拉选择缓存的实现

《el-select下拉选择缓存的实现》本文主要介绍了在使用el-select实现下拉选择缓存时遇到的问题及解决方案,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的... 目录项目场景:问题描述解决方案:项目场景:从左侧列表中选取字段填入右侧下拉多选框,用户可以对右侧

深入理解C++ 空类大小

《深入理解C++空类大小》本文主要介绍了C++空类大小,规定空类大小为1字节,主要是为了保证对象的唯一性和可区分性,满足数组元素地址连续的要求,下面就来了解一下... 目录1. 保证对象的唯一性和可区分性2. 满足数组元素地址连续的要求3. 与C++的对象模型和内存管理机制相适配查看类对象内存在C++中,规

Python pyinstaller实现图形化打包工具

《Pythonpyinstaller实现图形化打包工具》:本文主要介绍一个使用PythonPYQT5制作的关于pyinstaller打包工具,代替传统的cmd黑窗口模式打包页面,实现更快捷方便的... 目录1.简介2.运行效果3.相关源码1.简介一个使用python PYQT5制作的关于pyinstall

使用Python实现大文件切片上传及断点续传的方法

《使用Python实现大文件切片上传及断点续传的方法》本文介绍了使用Python实现大文件切片上传及断点续传的方法,包括功能模块划分(获取上传文件接口状态、临时文件夹状态信息、切片上传、切片合并)、整... 目录概要整体架构流程技术细节获取上传文件状态接口获取临时文件夹状态信息接口切片上传功能文件合并功能小

python实现自动登录12306自动抢票功能

《python实现自动登录12306自动抢票功能》随着互联网技术的发展,越来越多的人选择通过网络平台购票,特别是在中国,12306作为官方火车票预订平台,承担了巨大的访问量,对于热门线路或者节假日出行... 目录一、遇到的问题?二、改进三、进阶–展望总结一、遇到的问题?1.url-正确的表头:就是首先ur