Problem E: GJJ的日常之沉迷数学

2023-12-03 08:32
文章标签 日常 数学 problem 沉迷 gjj

本文主要是介绍Problem E: GJJ的日常之沉迷数学,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

Problem E: GJJ的日常之沉迷数学

Time Limit: 1 Sec   Memory Limit: 128 MB
Submit: 354   Solved: 51

Submit Web Board

Description

GJJ每天都要膜拜一发数学大佬,因为GJJ的数学太差了。这不,GJJ又遇到难题了,他想求助WJJ,但是WJJ这几天忙于追妹子,哪有时间给他讲题, 于是GJJ求助于热爱ACM的你,Acmer们能帮帮他吗?问题是求: k^0 + k^1 +...+ k^(n) mod p (0 < k < 100, 0 <= n <= 10^9, p = 1000000007)
例如:6^0 + 6^1 +...+ 6^(10) mod 1000000007 (其中k = 6, n = 10, p = 1000000007)

Input

输入测试数据有多组,每组输入两个整数k, n

Output

每组测试数据输出:Case #: 计算结果

Sample Input

2 16 10

Sample Output

Case 1: 3Case 2: 72559411

HINT

#include<bits/stdc++.h>
using namespace std;
typedef long long LL;
const LL mod = 1000000007ll;LL q_mod(LL a, LL b)
{LL ans = 1ll;while(b){if(b&1) ans = ans * a % mod;a = a * a % mod;b >>= 1;}return ans;
}int main()
{
//    freopen("in.txt", "r", stdin);
//    freopen("o.txt", "w", stdout);int n, k, cnt = 0;LL a, b, x;while(~scanf("%d%d", &k, &n)){if(k == 1){printf("Case %d: %d\n", ++cnt, n+1);continue;}a = q_mod(k, n+1) - 1ll;b = k - 1ll;x = q_mod(b, mod-2ll);printf("Case %d: %lld\n", ++cnt, a*x%mod);}return 0;
}


这篇关于Problem E: GJJ的日常之沉迷数学的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/448780

相关文章

csu 1446 Problem J Modified LCS (扩展欧几里得算法的简单应用)

这是一道扩展欧几里得算法的简单应用题,这题是在湖南多校训练赛中队友ac的一道题,在比赛之后请教了队友,然后自己把它a掉 这也是自己独自做扩展欧几里得算法的题目 题意:把题意转变下就变成了:求d1*x - d2*y = f2 - f1的解,很明显用exgcd来解 下面介绍一下exgcd的一些知识点:求ax + by = c的解 一、首先求ax + by = gcd(a,b)的解 这个

uva 10014 Simple calculations(数学推导)

直接按照题意来推导最后的结果就行了。 开始的时候只做到了第一个推导,第二次没有继续下去。 代码: #include<stdio.h>int main(){int T, n, i;double a, aa, sum, temp, ans;scanf("%d", &T);while(T--){scanf("%d", &n);scanf("%lf", &first);scanf

uva 10025 The ? 1 ? 2 ? ... ? n = k problem(数学)

题意是    ?  1  ?  2  ?  ...  ?  n = k 式子中给k,? 处可以填 + 也可以填 - ,问最小满足条件的n。 e.g k = 12  - 1 + 2 + 3 + 4 + 5 + 6 - 7 = 12 with n = 7。 先给证明,令 S(n) = 1 + 2 + 3 + 4 + 5 + .... + n 暴搜n,搜出当 S(n) >=

uva 11044 Searching for Nessy(小学数学)

题意是给出一个n*m的格子,求出里面有多少个不重合的九宫格。 (rows / 3) * (columns / 3) K.o 代码: #include <stdio.h>int main(){int ncase;scanf("%d", &ncase);while (ncase--){int rows, columns;scanf("%d%d", &rows, &col

【生成模型系列(初级)】嵌入(Embedding)方程——自然语言处理的数学灵魂【通俗理解】

【通俗理解】嵌入(Embedding)方程——自然语言处理的数学灵魂 关键词提炼 #嵌入方程 #自然语言处理 #词向量 #机器学习 #神经网络 #向量空间模型 #Siri #Google翻译 #AlexNet 第一节:嵌入方程的类比与核心概念【尽可能通俗】 嵌入方程可以被看作是自然语言处理中的“翻译机”,它将文本中的单词或短语转换成计算机能够理解的数学形式,即向量。 正如翻译机将一种语言

数学建模笔记—— 非线性规划

数学建模笔记—— 非线性规划 非线性规划1. 模型原理1.1 非线性规划的标准型1.2 非线性规划求解的Matlab函数 2. 典型例题3. matlab代码求解3.1 例1 一个简单示例3.2 例2 选址问题1. 第一问 线性规划2. 第二问 非线性规划 非线性规划 非线性规划是一种求解目标函数或约束条件中有一个或几个非线性函数的最优化问题的方法。运筹学的一个重要分支。2

CSP-J基础之数学基础 初等数论 一篇搞懂(一)

文章目录 前言声明初等数论是什么初等数论历史1. **古代时期**2. **中世纪时期**3. **文艺复兴与近代**4. **现代时期** 整数的整除性约数什么样的整数除什么样的整数才能得到整数?条件:举例说明:一般化: 判断两个数能否被整除 因数与倍数质数与复合数使用开根号法判定质数哥德巴赫猜想最大公因数与辗转相除法计算最大公因数的常用方法:举几个例子:例子 1: 计算 12 和 18

2024年AMC10美国数学竞赛倒计时两个月:吃透1250道真题和知识点(持续)

根据通知,2024年AMC10美国数学竞赛的报名还有两周,正式比赛还有两个月就要开始了。计划参赛的孩子们要记好时间,认真备考,最后冲刺再提高成绩。 那么如何备考2024年AMC10美国数学竞赛呢?做真题,吃透真题和背后的知识点是备考AMC8、AMC10有效的方法之一。通过做真题,可以帮助孩子找到真实竞赛的感觉,而且更加贴近比赛的内容,可以通过真题查漏补缺,更有针对性的补齐知识的短板。

Linux常用工具与命令日常记录(长期更新)

Linux常用工具与命令日常记录(长期更新) 目录 1.本地复制到远程2.Linux压缩拆包与解压3.生成随机密码4.ubuntu默认Python版本设置5.计算当前文件夹中文件数量6.windows中编写shell脚本,在Linux运行出错7.history 历史命令显示时间用户8.Ubuntu18.04设置源、网卡9.Ubuntu18.04设置网卡10.Ubuntu:自定义开

一些数学经验总结——关于将原一元二次函数增加一些限制条件后最优结果的对比(主要针对公平关切相关的建模)

1.没有分段的情况 原函数为一元二次凹函数(开口向下),如下: 因为要使得其存在正解,必须满足,那么。 上述函数的最优结果为:,。 对应的mathematica代码如下: Clear["Global`*"]f0[x_, a_, b_, c_, d_] := (a*x - b)*(d - c*x);(*(b c+a d)/(2 a c)*)Maximize[{f0[x, a, b,