Python concurrent.futures实现多进程多线程编程

2023-12-03 07:04

本文主要是介绍Python concurrent.futures实现多进程多线程编程,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

Python的concurrent.futures模块可以很方便的实现多进程、多线程运行,减少了多进程带来的的同步和共享数据问题。
Executor是一个抽象类,表示一个可执行的上下文。Future则代表一个将要执行的任务,并提供了一些方法来获取任务的状态和结果。ThreadPoolExecutor是Executor的一个具体实现类,它使用线程池来执行任务。

多线程

from concurrent.futures import ThreadPoolExecutor
import time# 任务函数
def task(name):print(f"任务{name}开始执行")time.sleep(2)print(f"任务{name}执行完毕")return True# 创建线程池
executor = ThreadPoolExecutor(max_workers=2)
# 提交任务
futures = []
for i in range(5):future = executor.submit(task, f"任务{i + 1}")futures.append(future)
# 等待所有任务完成
executor.shutdown()
# 打印任务结果
for future in futures:print(future.result())

首先创建线程池:ThreadPoolExecutor对象executor
然后提交任务列表:submit到线程池返回future,加入任务列表。
设置等待所有任务完成:executor.shutdown()
最后查看执行结果:future.result()

多线程

这里改用了ProcessPoolExecutor线程池。

import os
import random
import time
from concurrent.futures import ProcessPoolExecutordef task(n):print('%s is runing' % os.getpid())time.sleep(random.randint(1, 3))return n ** 2if __name__ == '__main__':executor = ProcessPoolExecutor(max_workers=3)futures = []for i in range(11):future = executor.submit(task, i)futures.append(future)executor.shutdown(True)for future in futures:print(future.result())

add_done_callback设置回调函数

import os
from concurrent.futures import ProcessPoolExecutorimport requestsdef get_page(url):print('<进程%s> get %s' % (os.getpid(), url))respone = requests.get(url)if respone.status_code == 200:return {'url': url, 'text': respone.text}def parse_page(res):res = res.result()print('<进程%s> parse %s' % (os.getpid(), res['url']))parse_res = 'url:<%s> size:[%s]\n' % (res['url'], len(res['text']))with open('db.txt', 'a') as f:f.write(parse_res)if __name__ == '__main__':urls = ['https://www.baidu.com','https://www.python.org','https://www.openstack.org','https://help.github.com/','http://www.sina.com.cn/']p = ProcessPoolExecutor(3)for url in urls:p.submit(get_page, url).add_done_callback(parse_page)# parse_page拿到的是一个future对象obj,需要用obj.result()拿到结果

相关链接

官方文档

这篇关于Python concurrent.futures实现多进程多线程编程的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/448554

相关文章

python: 多模块(.py)中全局变量的导入

文章目录 global关键字可变类型和不可变类型数据的内存地址单模块(单个py文件)的全局变量示例总结 多模块(多个py文件)的全局变量from x import x导入全局变量示例 import x导入全局变量示例 总结 global关键字 global 的作用范围是模块(.py)级别: 当你在一个模块(文件)中使用 global 声明变量时,这个变量只在该模块的全局命名空

hdu1043(八数码问题,广搜 + hash(实现状态压缩) )

利用康拓展开将一个排列映射成一个自然数,然后就变成了普通的广搜题。 #include<iostream>#include<algorithm>#include<string>#include<stack>#include<queue>#include<map>#include<stdio.h>#include<stdlib.h>#include<ctype.h>#inclu

【C++】_list常用方法解析及模拟实现

相信自己的力量,只要对自己始终保持信心,尽自己最大努力去完成任何事,就算事情最终结果是失败了,努力了也不留遗憾。💓💓💓 目录   ✨说在前面 🍋知识点一:什么是list? •🌰1.list的定义 •🌰2.list的基本特性 •🌰3.常用接口介绍 🍋知识点二:list常用接口 •🌰1.默认成员函数 🔥构造函数(⭐) 🔥析构函数 •🌰2.list对象

【Prometheus】PromQL向量匹配实现不同标签的向量数据进行运算

✨✨ 欢迎大家来到景天科技苑✨✨ 🎈🎈 养成好习惯,先赞后看哦~🎈🎈 🏆 作者简介:景天科技苑 🏆《头衔》:大厂架构师,华为云开发者社区专家博主,阿里云开发者社区专家博主,CSDN全栈领域优质创作者,掘金优秀博主,51CTO博客专家等。 🏆《博客》:Python全栈,前后端开发,小程序开发,人工智能,js逆向,App逆向,网络系统安全,数据分析,Django,fastapi

让树莓派智能语音助手实现定时提醒功能

最初的时候是想直接在rasa 的chatbot上实现,因为rasa本身是带有remindschedule模块的。不过经过一番折腾后,忽然发现,chatbot上实现的定时,语音助手不一定会有响应。因为,我目前语音助手的代码设置了长时间无应答会结束对话,这样一来,chatbot定时提醒的触发就不会被语音助手获悉。那怎么让语音助手也具有定时提醒功能呢? 我最后选择的方法是用threading.Time

Linux 网络编程 --- 应用层

一、自定义协议和序列化反序列化 代码: 序列化反序列化实现网络版本计算器 二、HTTP协议 1、谈两个简单的预备知识 https://www.baidu.com/ --- 域名 --- 域名解析 --- IP地址 http的端口号为80端口,https的端口号为443 url为统一资源定位符。CSDNhttps://mp.csdn.net/mp_blog/creation/editor

【Python编程】Linux创建虚拟环境并配置与notebook相连接

1.创建 使用 venv 创建虚拟环境。例如,在当前目录下创建一个名为 myenv 的虚拟环境: python3 -m venv myenv 2.激活 激活虚拟环境使其成为当前终端会话的活动环境。运行: source myenv/bin/activate 3.与notebook连接 在虚拟环境中,使用 pip 安装 Jupyter 和 ipykernel: pip instal

Android实现任意版本设置默认的锁屏壁纸和桌面壁纸(两张壁纸可不一致)

客户有些需求需要设置默认壁纸和锁屏壁纸  在默认情况下 这两个壁纸是相同的  如果需要默认的锁屏壁纸和桌面壁纸不一样 需要额外修改 Android13实现 替换默认桌面壁纸: 将图片文件替换frameworks/base/core/res/res/drawable-nodpi/default_wallpaper.*  (注意不能是bmp格式) 替换默认锁屏壁纸: 将图片资源放入vendo

C#实战|大乐透选号器[6]:实现实时显示已选择的红蓝球数量

哈喽,你好啊,我是雷工。 关于大乐透选号器在前面已经记录了5篇笔记,这是第6篇; 接下来实现实时显示当前选中红球数量,蓝球数量; 以下为练习笔记。 01 效果演示 当选择和取消选择红球或蓝球时,在对应的位置显示实时已选择的红球、蓝球的数量; 02 标签名称 分别设置Label标签名称为:lblRedCount、lblBlueCount

【机器学习】高斯过程的基本概念和应用领域以及在python中的实例

引言 高斯过程(Gaussian Process,简称GP)是一种概率模型,用于描述一组随机变量的联合概率分布,其中任何一个有限维度的子集都具有高斯分布 文章目录 引言一、高斯过程1.1 基本定义1.1.1 随机过程1.1.2 高斯分布 1.2 高斯过程的特性1.2.1 联合高斯性1.2.2 均值函数1.2.3 协方差函数(或核函数) 1.3 核函数1.4 高斯过程回归(Gauss