Python concurrent.futures实现多进程多线程编程

2023-12-03 07:04

本文主要是介绍Python concurrent.futures实现多进程多线程编程,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

Python的concurrent.futures模块可以很方便的实现多进程、多线程运行,减少了多进程带来的的同步和共享数据问题。
Executor是一个抽象类,表示一个可执行的上下文。Future则代表一个将要执行的任务,并提供了一些方法来获取任务的状态和结果。ThreadPoolExecutor是Executor的一个具体实现类,它使用线程池来执行任务。

多线程

from concurrent.futures import ThreadPoolExecutor
import time# 任务函数
def task(name):print(f"任务{name}开始执行")time.sleep(2)print(f"任务{name}执行完毕")return True# 创建线程池
executor = ThreadPoolExecutor(max_workers=2)
# 提交任务
futures = []
for i in range(5):future = executor.submit(task, f"任务{i + 1}")futures.append(future)
# 等待所有任务完成
executor.shutdown()
# 打印任务结果
for future in futures:print(future.result())

首先创建线程池:ThreadPoolExecutor对象executor
然后提交任务列表:submit到线程池返回future,加入任务列表。
设置等待所有任务完成:executor.shutdown()
最后查看执行结果:future.result()

多线程

这里改用了ProcessPoolExecutor线程池。

import os
import random
import time
from concurrent.futures import ProcessPoolExecutordef task(n):print('%s is runing' % os.getpid())time.sleep(random.randint(1, 3))return n ** 2if __name__ == '__main__':executor = ProcessPoolExecutor(max_workers=3)futures = []for i in range(11):future = executor.submit(task, i)futures.append(future)executor.shutdown(True)for future in futures:print(future.result())

add_done_callback设置回调函数

import os
from concurrent.futures import ProcessPoolExecutorimport requestsdef get_page(url):print('<进程%s> get %s' % (os.getpid(), url))respone = requests.get(url)if respone.status_code == 200:return {'url': url, 'text': respone.text}def parse_page(res):res = res.result()print('<进程%s> parse %s' % (os.getpid(), res['url']))parse_res = 'url:<%s> size:[%s]\n' % (res['url'], len(res['text']))with open('db.txt', 'a') as f:f.write(parse_res)if __name__ == '__main__':urls = ['https://www.baidu.com','https://www.python.org','https://www.openstack.org','https://help.github.com/','http://www.sina.com.cn/']p = ProcessPoolExecutor(3)for url in urls:p.submit(get_page, url).add_done_callback(parse_page)# parse_page拿到的是一个future对象obj,需要用obj.result()拿到结果

相关链接

官方文档

这篇关于Python concurrent.futures实现多进程多线程编程的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/448554

相关文章

SpringBoot集成redisson实现延时队列教程

《SpringBoot集成redisson实现延时队列教程》文章介绍了使用Redisson实现延迟队列的完整步骤,包括依赖导入、Redis配置、工具类封装、业务枚举定义、执行器实现、Bean创建、消费... 目录1、先给项目导入Redisson依赖2、配置redis3、创建 RedissonConfig 配

SpringBoot分段处理List集合多线程批量插入数据方式

《SpringBoot分段处理List集合多线程批量插入数据方式》文章介绍如何处理大数据量List批量插入数据库的优化方案:通过拆分List并分配独立线程处理,结合Spring线程池与异步方法提升效率... 目录项目场景解决方案1.实体类2.Mapper3.spring容器注入线程池bejsan对象4.创建

Python的Darts库实现时间序列预测

《Python的Darts库实现时间序列预测》Darts一个集统计、机器学习与深度学习模型于一体的Python时间序列预测库,本文主要介绍了Python的Darts库实现时间序列预测,感兴趣的可以了解... 目录目录一、什么是 Darts?二、安装与基本配置安装 Darts导入基础模块三、时间序列数据结构与

Python正则表达式匹配和替换的操作指南

《Python正则表达式匹配和替换的操作指南》正则表达式是处理文本的强大工具,Python通过re模块提供了完整的正则表达式功能,本文将通过代码示例详细介绍Python中的正则匹配和替换操作,需要的朋... 目录基础语法导入re模块基本元字符常用匹配方法1. re.match() - 从字符串开头匹配2.

Python使用FastAPI实现大文件分片上传与断点续传功能

《Python使用FastAPI实现大文件分片上传与断点续传功能》大文件直传常遇到超时、网络抖动失败、失败后只能重传的问题,分片上传+断点续传可以把大文件拆成若干小块逐个上传,并在中断后从已完成分片继... 目录一、接口设计二、服务端实现(FastAPI)2.1 运行环境2.2 目录结构建议2.3 serv

C#实现千万数据秒级导入的代码

《C#实现千万数据秒级导入的代码》在实际开发中excel导入很常见,现代社会中很容易遇到大数据处理业务,所以本文我就给大家分享一下千万数据秒级导入怎么实现,文中有详细的代码示例供大家参考,需要的朋友可... 目录前言一、数据存储二、处理逻辑优化前代码处理逻辑优化后的代码总结前言在实际开发中excel导入很

通过Docker容器部署Python环境的全流程

《通过Docker容器部署Python环境的全流程》在现代化开发流程中,Docker因其轻量化、环境隔离和跨平台一致性的特性,已成为部署Python应用的标准工具,本文将详细演示如何通过Docker容... 目录引言一、docker与python的协同优势二、核心步骤详解三、进阶配置技巧四、生产环境最佳实践

Python一次性将指定版本所有包上传PyPI镜像解决方案

《Python一次性将指定版本所有包上传PyPI镜像解决方案》本文主要介绍了一个安全、完整、可离线部署的解决方案,用于一次性准备指定Python版本的所有包,然后导出到内网环境,感兴趣的小伙伴可以跟随... 目录为什么需要这个方案完整解决方案1. 项目目录结构2. 创建智能下载脚本3. 创建包清单生成脚本4

SpringBoot+RustFS 实现文件切片极速上传的实例代码

《SpringBoot+RustFS实现文件切片极速上传的实例代码》本文介绍利用SpringBoot和RustFS构建高性能文件切片上传系统,实现大文件秒传、断点续传和分片上传等功能,具有一定的参考... 目录一、为什么选择 RustFS + SpringBoot?二、环境准备与部署2.1 安装 RustF

Nginx部署HTTP/3的实现步骤

《Nginx部署HTTP/3的实现步骤》本文介绍了在Nginx中部署HTTP/3的详细步骤,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学... 目录前提条件第一步:安装必要的依赖库第二步:获取并构建 BoringSSL第三步:获取 Nginx