Python过滤掉特定区域内的矩形框

2023-12-02 13:52

本文主要是介绍Python过滤掉特定区域内的矩形框,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

Python过滤掉特定区域内的矩形框

  • 前言
  • 前提条件
  • 相关介绍
  • 实验环境
  • 过滤掉特定区域内的矩形框
    • 方法一:直接法(for循环遍历)
      • 代码实现
      • 输出结果
    • 方法二:列表推导式
      • 代码实现
      • 输出结果

在这里插入图片描述

前言

  • 由于本人水平有限,难免出现错漏,敬请批评改正。
  • 更多精彩内容,可点击进入Python日常小操作专栏、OpenCV-Python小应用专栏、YOLO系列专栏、自然语言处理专栏或我的个人主页查看
  • YOLOv8 Ultralytics:使用Ultralytics框架训练RT-DETR实时目标检测模型
  • 基于DETR的人脸伪装检测
  • YOLOv7训练自己的数据集(口罩检测)
  • YOLOv8训练自己的数据集(足球检测)
  • YOLOv5:TensorRT加速YOLOv5模型推理
  • YOLOv5:IoU、GIoU、DIoU、CIoU、EIoU
  • 玩转Jetson Nano(五):TensorRT加速YOLOv5目标检测
  • YOLOv5:添加SE、CBAM、CoordAtt、ECA注意力机制
  • YOLOv5:yolov5s.yaml配置文件解读、增加小目标检测层
  • Python将COCO格式实例分割数据集转换为YOLO格式实例分割数据集
  • YOLOv5:使用7.0版本训练自己的实例分割模型(车辆、行人、路标、车道线等实例分割)
  • 使用Kaggle GPU资源免费体验Stable Diffusion开源项目

前提条件

  • 熟悉Python

相关介绍

  • Python是一种跨平台的计算机程序设计语言。是一个高层次的结合了解释性、编译性、互动性和面向对象的脚本语言。最初被设计用于编写自动化脚本(shell),随着版本的不断更新和语言新功能的添加,越多被用于独立的、大型项目的开发。
  • PyTorch 是一个深度学习框架,封装好了很多网络和深度学习相关的工具方便我们调用,而不用我们一个个去单独写了。它分为 CPU 和 GPU 版本,其他框架还有 TensorFlow、Caffe 等。PyTorch 是由 Facebook 人工智能研究院(FAIR)基于 Torch 推出的,它是一个基于 Python 的可续计算包,提供两个高级功能:1、具有强大的 GPU 加速的张量计算(如 NumPy);2、构建深度神经网络时的自动微分机制。
  • YOLOv5是一种单阶段目标检测算法,该算法在YOLOv4的基础上添加了一些新的改进思路,使其速度与精度都得到了极大的性能提升。它是一个在COCO数据集上预训练的物体检测架构和模型系列,代表了Ultralytics对未来视觉AI方法的开源研究,其中包含了经过数千小时的研究和开发而形成的经验教训和最佳实践。
  • Labelme是一款图像标注工具,由麻省理工(MIT)的计算机科学和人工智能实验室(CSAIL)研发。它是用Python和PyQT编写的,开源且免费。Labelme支持Windows、Linux和Mac等操作系统。
  • 这款工具提供了直观的图形界面,允许用户在图像上标注多种类型的目标,例如矩形框、多边形、线条等,甚至包括更复杂的形状。标注结果以JSON格式保存,便于后续处理和分析。这些标注信息可以用于目标检测、图像分割、图像分类等任务。
  • 总的来说,Labelme是一款强大且易用的图像标注工具,可以满足不同的图像处理需求。
  • Labelme标注json文件是一种用于存储标注信息的文件格式,它包含了以下几个主要的字段:
    • version: Labelme的版本号,例如"4.5.6"。
    • flags: 一些全局的标志,例如是否是分割任务,是否有多边形,等等。
    • shapes: 一个列表,每个元素是一个字典,表示一个标注对象。每个字典包含了以下几个字段:
      • label: 标注对象的类别名称,例如"dog"。
      • points: 一个列表,每个元素是一个坐标对,表示标注对象的边界点,例如[[10, 20], [30, 40]]。
      • group_id: 标注对象的分组编号,用于表示属于同一组的对象,例如1。
      • shape_type: 标注对象的形状类型,例如"polygon",“rectangle”,“circle”,等等。
      • flags: 一些针对该标注对象的标志,例如是否是难例,是否被遮挡,等等。
    • lineColor: 标注对象的边界线颜色,例如[0, 255, 0, 128]。
    • fillColor: 标注对象的填充颜色,例如[255, 0, 0, 128]。
    • imagePath: 图像文件的相对路径,例如"img_001.jpg"。
    • imageData: 图像文件的二进制数据,经过base64编码后的字符串,例如"iVBORw0KGgoAAAANSUhEUgAA…"。
    • imageHeight: 图像的高度,例如600。
    • imageWidth: 图像的宽度,例如800。

以下是一个Labelme标注json文件的示例:

{"version": "4.5.6","flags": {},"shapes": [{"label": "dog","points": [[121.0,233.0],[223.0,232.0],[246.0,334.0],[121.0,337.0]],"group_id": null,"shape_type": "polygon","flags": {}}],"lineColor": [0,255,0,128],"fillColor": [255,0,0,128],"imagePath": "img_001.jpg","imageData": "iVBORw0KGgoAAAANSUhEUgAA...","imageHeight": 600,"imageWidth": 800
}

实验环境

  • Python 3.x (面向对象的高级语言)

过滤掉特定区域内的矩形框

  • 背景:将预测出来的矩形框,过滤掉特定区域内(某些不需要的)的矩形框

在这里插入图片描述

方法一:直接法(for循环遍历)

代码实现

import cv2
import copy
import numpy as npdef is_rect_inside(rect, filtered_rects):  for filtered_rect in filtered_rects:  if (rect[1] >= filtered_rect[1] and rect[1] + rect[3] <= filtered_rect[1] + filtered_rect[3] and  rect[2] >= filtered_rect[2] and rect[2] + rect[4] <= filtered_rect[2] + filtered_rect[4]):  return True  return False  def filter_rect(rects_list,labels_list,scores_list,filtered_rects,pad_x=50,pad_y=50):'''合并重叠框 输入参数: rects_list :[[占位符,x,y,w,h,占位符],[占位符,x,y,w,h,占位符],...]labels_list :[0,1,...]scores_list :[0.8,0.15,...]filtered_rects: [[占位符,x,y,w,h,占位符],[占位符,x,y,w,h,占位符],...]返回:过滤后的rects_list : [[占位符,x,y,w,h,占位符],[占位符,x,y,w,h,占位符],...]过滤后的labels_list : [0,1,...]过滤后的scores_list : [0.8,0.15,...]'''new_rects_list = []new_labels_list = []new_scores_list = []for index,rect in enumerate(rects_list):if not is_rect_inside(rect, filtered_rects):new_rects_list.append(rect)new_labels_list.append(labels_list[index])new_scores_list.append(scores_list[index])return new_rects_list,new_labels_list,new_scores_listif __name__=="__main__":# 特定区域(蓝色区域)filtered_rects = [[2.0,390,390,60,60,0.0],[2.0,90,90,250,250,0.0]]# 原始矩形框rects_list = [[2.0,10,10,15,15,0.0],[2.0,20,20,10,10,0.0],[2.0,100,100,150,150,0.0],  [2.0,200,200,100,100,0.0],[2.0,400,400,15,15,0.0],[2.0,420,420,10,10,0.0]] # [占位符,x,y,w,h,占位符]# print("原始的矩形框:",rects_list)labels_list = [0,1,2,3,2,1]scores_list = [0.8,0.9,0.5,0.6,0.7,0.3]img = np.ones([512, 512, 3], np.uint8)for _,x,y,w,h,_ in rects_list:img = cv2.rectangle(img, (x,y), (x+w,y+h), (0, 255, 0), 2)for _,x,y,w,h,_ in filtered_rects:img = cv2.rectangle(img, (x,y), (x+w,y+h), (255, 0, 0), 2)cv2.imshow('origin', img)# cv2.imwrite('origin.jpg', img)new_rects_list,new_labels_list,new_scores_list = filter_rect(rects_list,labels_list,scores_list,filtered_rects,pad_x=50,pad_y=50)# print("过滤后的矩形框,类别,置信度:",new_rects_list,new_labels_list,new_scores_list)img = np.ones([512, 512, 3], np.uint8) for _,x,y,w,h,_ in new_rects_list:img = cv2.rectangle(img, (x,y), (x+w,y+h), (0, 0, 255), 2)for _,x,y,w,h,_ in filtered_rects:img = cv2.rectangle(img, (x,y), (x+w,y+h), (255, 0, 0), 2)cv2.imshow('filtered', img)# cv2.imwrite('filtered.jpg', img)cv2.waitKey(0)cv2.destroyAllWindows()

输出结果

在这里插入图片描述

方法二:列表推导式

代码实现

import cv2
import copy
import numpy as npdef is_rect_inside(rect, filtered_rects):  for filtered_rect in filtered_rects:  if (rect[1] >= filtered_rect[1] and rect[1] + rect[3] <= filtered_rect[1] + filtered_rect[3] and  rect[2] >= filtered_rect[2] and rect[2] + rect[4] <= filtered_rect[2] + filtered_rect[4]):  return True  return False  if __name__=="__main__":# 特定区域(蓝色区域)filtered_rects = [[2.0,390,390,60,60,0.0],[2.0,90,90,250,250,0.0]]# 原始矩形框rects_list = [[2.0,10,10,15,15,0.0],[2.0,20,20,10,10,0.0],[2.0,100,100,150,150,0.0],  [2.0,200,200,100,100,0.0],[2.0,400,400,15,15,0.0],[2.0,420,420,10,10,0.0]] # [占位符,x,y,w,h,占位符] # print("原始的矩形框:",rects_list)labels_list = [0,1,2,3,2,1]scores_list = [0.8,0.9,0.5,0.6,0.7,0.3] img = np.ones([512, 512, 3], np.uint8)for _,x,y,w,h,_ in rects_list:img = cv2.rectangle(img, (x,y), (x+w,y+h), (0, 255, 0), 2)for _,x,y,w,h,_ in filtered_rects:img = cv2.rectangle(img, (x,y), (x+w,y+h), (255, 0, 0), 2)cv2.imshow('origin', img)# cv2.imwrite('origin.jpg', img)print("原始的矩形框:", rects_list)  filtered_rects_list = [rect for rect in rects_list if not is_rect_inside(rect, filtered_rects)]filtered_labels_list = [labels_list[index] for index,rect in enumerate(rects_list) if not is_rect_inside(rect, filtered_rects)]filtered_scores_list = [scores_list[index] for index,rect in enumerate(rects_list) if not is_rect_inside(rect, filtered_rects)]print("过滤后的矩形框,类别,置信度:", filtered_rects_list,filtered_labels_list,filtered_scores_list)img = np.ones([512, 512, 3], np.uint8) for _,x,y,w,h,_ in filtered_rects_list:img = cv2.rectangle(img, (x,y), (x+w,y+h), (0, 0, 255), 2)for _,x,y,w,h,_ in filtered_rects:img = cv2.rectangle(img, (x,y), (x+w,y+h), (255, 0, 0), 2)cv2.imshow('filtered', img)# cv2.imwrite('filtered.jpg', img)cv2.waitKey(0)cv2.destroyAllWindows()

输出结果

在这里插入图片描述

  • 由于本人水平有限,难免出现错漏,敬请批评改正。
  • 更多精彩内容,可点击进入Python日常小操作专栏、OpenCV-Python小应用专栏、YOLO系列专栏、自然语言处理专栏或我的个人主页查看
  • YOLOv8 Ultralytics:使用Ultralytics框架训练RT-DETR实时目标检测模型
  • 基于DETR的人脸伪装检测
  • YOLOv7训练自己的数据集(口罩检测)
  • YOLOv8训练自己的数据集(足球检测)
  • YOLOv5:TensorRT加速YOLOv5模型推理
  • YOLOv5:IoU、GIoU、DIoU、CIoU、EIoU
  • 玩转Jetson Nano(五):TensorRT加速YOLOv5目标检测
  • YOLOv5:添加SE、CBAM、CoordAtt、ECA注意力机制
  • YOLOv5:yolov5s.yaml配置文件解读、增加小目标检测层
  • Python将COCO格式实例分割数据集转换为YOLO格式实例分割数据集
  • YOLOv5:使用7.0版本训练自己的实例分割模型(车辆、行人、路标、车道线等实例分割)
  • 使用Kaggle GPU资源免费体验Stable Diffusion开源项目

这篇关于Python过滤掉特定区域内的矩形框的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/445587

相关文章

讯飞webapi语音识别接口调用示例代码(python)

《讯飞webapi语音识别接口调用示例代码(python)》:本文主要介绍如何使用Python3调用讯飞WebAPI语音识别接口,重点解决了在处理语音识别结果时判断是否为最后一帧的问题,通过运行代... 目录前言一、环境二、引入库三、代码实例四、运行结果五、总结前言基于python3 讯飞webAPI语音

基于Python开发PDF转PNG的可视化工具

《基于Python开发PDF转PNG的可视化工具》在数字文档处理领域,PDF到图像格式的转换是常见需求,本文介绍如何利用Python的PyMuPDF库和Tkinter框架开发一个带图形界面的PDF转P... 目录一、引言二、功能特性三、技术架构1. 技术栈组成2. 系统架构javascript设计3.效果图

Python如何在Word中生成多种不同类型的图表

《Python如何在Word中生成多种不同类型的图表》Word文档中插入图表不仅能直观呈现数据,还能提升文档的可读性和专业性,本文将介绍如何使用Python在Word文档中创建和自定义各种图表,需要的... 目录在Word中创建柱形图在Word中创建条形图在Word中创建折线图在Word中创建饼图在Word

Python Excel实现自动添加编号

《PythonExcel实现自动添加编号》这篇文章主要为大家详细介绍了如何使用Python在Excel中实现自动添加编号效果,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录1、背景介绍2、库的安装3、核心代码4、完整代码1、背景介绍简单的说,就是在Excel中有一列h=会有重复

Python FastAPI入门安装使用

《PythonFastAPI入门安装使用》FastAPI是一个现代、快速的PythonWeb框架,用于构建API,它基于Python3.6+的类型提示特性,使得代码更加简洁且易于绶护,这篇文章主要介... 目录第一节:FastAPI入门一、FastAPI框架介绍什么是ASGI服务(WSGI)二、FastAP

Python中Windows和macOS文件路径格式不一致的解决方法

《Python中Windows和macOS文件路径格式不一致的解决方法》在Python中,Windows和macOS的文件路径字符串格式不一致主要体现在路径分隔符上,这种差异可能导致跨平台代码在处理文... 目录方法 1:使用 os.path 模块方法 2:使用 pathlib 模块(推荐)方法 3:统一使

一文教你解决Python不支持中文路径的问题

《一文教你解决Python不支持中文路径的问题》Python是一种广泛使用的高级编程语言,然而在处理包含中文字符的文件路径时,Python有时会表现出一些不友好的行为,下面小编就来为大家介绍一下具体的... 目录问题背景解决方案1. 设置正确的文件编码2. 使用pathlib模块3. 转换路径为Unicod

Python结合Flask框架构建一个简易的远程控制系统

《Python结合Flask框架构建一个简易的远程控制系统》这篇文章主要为大家详细介绍了如何使用Python与Flask框架构建一个简易的远程控制系统,能够远程执行操作命令(如关机、重启、锁屏等),还... 目录1.概述2.功能使用系统命令执行实时屏幕监控3. BUG修复过程1. Authorization

Python使用DeepSeek进行联网搜索功能详解

《Python使用DeepSeek进行联网搜索功能详解》Python作为一种非常流行的编程语言,结合DeepSeek这一高性能的深度学习工具包,可以方便地处理各种深度学习任务,本文将介绍一下如何使用P... 目录一、环境准备与依赖安装二、DeepSeek简介三、联网搜索与数据集准备四、实践示例:图像分类1.

Python中__new__()方法适应及注意事项详解

《Python中__new__()方法适应及注意事项详解》:本文主要介绍Python中__new__()方法适应及注意事项的相关资料,new()方法是Python中的一个特殊构造方法,用于在创建对... 目录前言基本用法返回值单例模式自定义对象创建注意事项总结前言new() 方法在 python 中是一个