使用paddledetection的记录

2023-12-02 11:30

本文主要是介绍使用paddledetection的记录,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

首先在这里使用的是是paddle--detection2.7的版本。

成功进行训练

目录:

目录

数据集准备

配置文件的修改


使用的是BML的平台工具:

!python -m pip install paddlepaddle-gpu==2.5 -i https://mirror.baidu.com/pypi/simple --user
%cd /home/aistudio/
# !wget https://codeload.github.com/PaddlePaddle/PaddleDetection/zip/refs/heads/release/2.7
#因为github需要登录,所以下载不成功,因此这里直接上传了2.7的版本
# !unzip /home/aistudio/PaddleDetection-release-2.7.zip  
%cd /home/aistudio/PaddleDetection-release-2.7/
!pip install -r requirements.txt
!python setup.py install
#用来测试是否安装成功,另外补充安装一个numba
!pip install numba==0.56.4
# !python ppdet/modeling/tests/test_architectures.py

要求的paddle版本必须是大于2.3.2的。注意版本问题就是了配置环境的时候,其他的大问题没什么。

下面这段代码,可以用来确认是否安装成功指定版本:

import paddle
paddle.utils.run_check()
# 确认PaddlePaddle版本
!python -c "import paddle; print(paddle.__version__)"

如果成功,则会打印如下信息:

PaddlePaddle works well on 1 GPU. PaddlePaddle is installed successfully! Let's start deep learning with PaddlePaddle now. 
2.5.0

然后就是准备数据集了,在这里我使用的是开源的MOT17数据集,这个数据集,只有训练集,没有测试集,下载和解压命令如下:

!wget https://bj.bcebos.com/v1/paddledet/data/mot/MOT17.zip
!unzip /home/aistudio/data/MOT17.zip  -d /home/aistudio/PaddleDetection-release-2.7/dataset/mot/

数据集准备:

提到数据集,在这里延伸的扩展一哈,paddledetection里面对于数据集的要求(仅限多目标跟踪)有如下几种格式:

1、自定义数据集;

2、一类纯检测框标注的数据集,仅SDE系列(ByteTrack)可以使用;

3、另一类是同时有检测和ReID标注的数据集,SDE系列(DeepSORT)和JDE系列都可以使用

因此下面的数据集准备会分成两种来讲:

****************

ReID标注是一种目标跟踪的标注方法,它基于深度学习技术进行目标跟踪。在ReID标注中,需要对视频序列中的目标进行标记和追踪,以便在多个摄像头监控的画面中实现目标跟踪。这种标注方法有助于提高目标跟踪的准确性和稳定性。

***************

其中自定义数据集参考:PaddleDetection/docs/tutorials/data/PrepareDetDataSet.md at release/2.7 · PaddlePaddle/PaddleDetection (github.com)

首先:SDE数据集是纯检测标注的数据集,可以按照自定义数据集准备成(VOC,或者是COCO数据集)

这里以这个MOT17的数据集来作为例子,进行举例:

数据集下载解压以后有三个文件夹:

第一个是annotations是

里面包含的信息有:如下内容(图片路径,注意这里的图片路径是用的是在后面我们会提到的dataset_dir的基础上添加的路径)

可以看到上面的train有两种,第一种half的意思是:在MOT17/images/half中,它可能指的是存储在图像中的目标物体的标注信息,例如边界框信息、分割信息、类别信息等,这些信息以半精度浮点数的形式进行存储和计算,可以提高模型的计算效率和准确性。

第二个是images文件夹

每个子目录下都是一段视频的抽帧图片及标注。

det

训练集中/det 文件夹中是针对检测的信息,该目录下只有一个det.txt文件,每行一个标注,代表一个检测的物体。

参数说明:每一行标注的含义如下:第一个代表第几帧,第二个代表轨迹编号(因为检测结果只看检测框质量,不看id,故为id=-1。),bb开头的4个数代表物体框的左上角坐标及长宽。conf代表置信度。

gt

训练集中/gt 文件夹中是针对追踪的信息,该目录下只有一个gt.txt文件(相当于half里面的一个gt_all.txt文件,而half里面的gt.txt只有一半的帧长),每行一个标注,代表一个检测的物体。

每一行标注的含义如下:第一个代表第几帧,第二个值为目标运动轨迹的ID号,bb开头的4个数代表物体框的左上角坐标及长宽,第7个值为目标轨迹是否进入考虑范围内的标志,0表示忽略,1表示active。第八个值为该轨迹对应的目标种类(种类见下面的表格中的label-ID对应情况),第九个值为box的visibility ratio,表示目标运动时被其他目标box包含/覆盖或者目标之间box边缘裁剪情况。

img1里面存放的就是图片了;

然后就是seqinfo.ini文件

介绍视频的帧率、分辨率等基本信息(分割片段名;图片路径;该子集的帧率,每秒30帧;表示该子集的长度600帧,以帧数为单位;图片的宽度;高度;后缀名)

最后就是labels_with_ids,是指

在标注文本中,每行都描述一个边界框,格式如下:

[class] [identity] [x_center] [y_center] [width] [height]

  • class类别id,支持单类别和多类别,从0开始计,单类别即为0
  • identity是从1num_identities的整数(num_identities是数据集中所有视频或图片序列的不同物体实例的总数),如果此框没有identity标注,则为-1
  • [x_center] [y_center] [width] [height]是中心点坐标和宽高,注意他们的值是由图片的宽度/高度标准化的,因此它们是从0到1的浮点数。

配置文件的修改

在2.7版本,这里用ByteTrack来训练MOT17的数据集举例:

训练的命令是:

!python -m paddle.distributed.launch --log_dir=ppyoloe --gpus 0 tools/train.py -c configs/mot/bytetrack/detector/ppyoloe_crn_l_36e_640x640_mot17half.yml --eval --amp

主要的配置文件是这个:ppyoloe_crn_l_36e_640x640_mot17half.yml,在 configs/mot/bytetrack/detector/下面

修改的是mot2.yml,这是自己新建的一个文件,用来重新定义数据集的路径!

这篇关于使用paddledetection的记录的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/445177

相关文章

Python虚拟环境终极(含PyCharm的使用教程)

《Python虚拟环境终极(含PyCharm的使用教程)》:本文主要介绍Python虚拟环境终极(含PyCharm的使用教程),具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,... 目录一、为什么需要虚拟环境?二、虚拟环境创建方式对比三、命令行创建虚拟环境(venv)3.1 基础命令3

Python Transformer 库安装配置及使用方法

《PythonTransformer库安装配置及使用方法》HuggingFaceTransformers是自然语言处理(NLP)领域最流行的开源库之一,支持基于Transformer架构的预训练模... 目录python 中的 Transformer 库及使用方法一、库的概述二、安装与配置三、基础使用:Pi

关于pandas的read_csv方法使用解读

《关于pandas的read_csv方法使用解读》:本文主要介绍关于pandas的read_csv方法使用,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录pandas的read_csv方法解读read_csv中的参数基本参数通用解析参数空值处理相关参数时间处理相关

使用Node.js制作图片上传服务的详细教程

《使用Node.js制作图片上传服务的详细教程》在现代Web应用开发中,图片上传是一项常见且重要的功能,借助Node.js强大的生态系统,我们可以轻松搭建高效的图片上传服务,本文将深入探讨如何使用No... 目录准备工作搭建 Express 服务器配置 multer 进行图片上传处理图片上传请求完整代码示例

SpringBoot条件注解核心作用与使用场景详解

《SpringBoot条件注解核心作用与使用场景详解》SpringBoot的条件注解为开发者提供了强大的动态配置能力,理解其原理和适用场景是构建灵活、可扩展应用的关键,本文将系统梳理所有常用的条件注... 目录引言一、条件注解的核心机制二、SpringBoot内置条件注解详解1、@ConditionalOn

Python中使用正则表达式精准匹配IP地址的案例

《Python中使用正则表达式精准匹配IP地址的案例》Python的正则表达式(re模块)是完成这个任务的利器,但你知道怎么写才能准确匹配各种合法的IP地址吗,今天我们就来详细探讨这个问题,感兴趣的朋... 目录为什么需要IP正则表达式?IP地址的基本结构基础正则表达式写法精确匹配0-255的数字验证IP地

MySQL 中查询 VARCHAR 类型 JSON 数据的问题记录

《MySQL中查询VARCHAR类型JSON数据的问题记录》在数据库设计中,有时我们会将JSON数据存储在VARCHAR或TEXT类型字段中,本文将详细介绍如何在MySQL中有效查询存储为V... 目录一、问题背景二、mysql jsON 函数2.1 常用 JSON 函数三、查询示例3.1 基本查询3.2

使用Python实现全能手机虚拟键盘的示例代码

《使用Python实现全能手机虚拟键盘的示例代码》在数字化办公时代,你是否遇到过这样的场景:会议室投影电脑突然键盘失灵、躺在沙发上想远程控制书房电脑、或者需要给长辈远程协助操作?今天我要分享的Pyth... 目录一、项目概述:不止于键盘的远程控制方案1.1 创新价值1.2 技术栈全景二、需求实现步骤一、需求

Spring LDAP目录服务的使用示例

《SpringLDAP目录服务的使用示例》本文主要介绍了SpringLDAP目录服务的使用示例... 目录引言一、Spring LDAP基础二、LdapTemplate详解三、LDAP对象映射四、基本LDAP操作4.1 查询操作4.2 添加操作4.3 修改操作4.4 删除操作五、认证与授权六、高级特性与最佳

Qt spdlog日志模块的使用详解

《Qtspdlog日志模块的使用详解》在Qt应用程序开发中,良好的日志系统至关重要,本文将介绍如何使用spdlog1.5.0创建满足以下要求的日志系统,感兴趣的朋友一起看看吧... 目录版本摘要例子logmanager.cpp文件main.cpp文件版本spdlog版本:1.5.0采用1.5.0版本主要