Leetcod面试经典150题刷题记录——数组 / 字符串篇

2023-12-02 03:12

本文主要是介绍Leetcod面试经典150题刷题记录——数组 / 字符串篇,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

数组 / 字符串篇

    • 1. 合并两个有序数组
      • Python3
        • 排序法
        • 双指针法
    • 2. 删除有序数组中的重复元素
    • 3. H 指数
      • Python3
        • 排序法
        • 计数排序法
        • 二分查找

有个技巧,若想熟悉语言的写法,可以照着其它语言的题解,写目标语言的代码,比如有C/C++的题解,写Python的算法,这样同时可以对比两种语言,并熟悉Python代码中API的使用,并且可以增强代码的迁移能力,语言只是一种实现的工具,不被语言束缚也是一种自由。

1. 合并两个有序数组

合并两个有序数组 - leetcode

题目描述:
给你两个按 非递减顺序 排列的整数数组 nums1 和 nums2,另有两个整数 m 和 n ,分别表示 nums1 和 nums2 中的元素数目。
请你 合并 nums2 到 nums1 中,使合并后的数组同样按 非递减顺序 排列。
注意:最终,合并后数组不应由函数返回,而是存储在数组 nums1 中。为了应对这种情况,nums1 的初始长度为 m + n,其中前 m 个元素表示应合并的元素,后 n 个元素为 0 ,应忽略。nums2 的长度为 n 。

解题思路:
(1) 排序法。将nums2添加至nums1并排序,但这样的做法未利用到nums1与nums2非递减的特性,时间复杂度是排序的时间复杂度 O ( ( m + n ) l o g 2 ( m + n ) ) O((m+n)log_2(m+n)) O((m+n)log2(m+n)),空间复杂度认为是快排的空间复杂度 O ( l o g 2 ( m + n ) ) O(log_2(m+n)) O(log2(m+n))
(2) 双指针法。新建一个数组sorted用来存储,然后将nums1指向新数组的内容,用双指针比较nums1和nums2各元素的大小,存储至sorted数组中

Python3

排序法
class Solution:def merge(self, nums1: List[int], m: int, nums2: List[int], n: int) -> None:"""Do not return anything, modify nums1 in-place instead."""nums1[m:] = nums2nums1.sort()
双指针法
class Solution:def merge(self, nums1: List[int], m: int, nums2: List[int], n: int) -> None:"""Do not return anything, modify nums1 in-place instead."""p1, p2 = 0,0index_bound1, index_bound2 = m-1,n-1 # 数组下标索引边界,这和长度有区别sorted = []while p1 <= index_bound1 or p2 <= index_bound2:# 1.若有某一数组下标出界,表明该数组已判断完成,应存另一数组的值if p1 > index_bound1:sorted.append(nums2[p2])p2 += 1elif p2 > index_bound2:sorted.append(nums1[p1])p1 += 1# 2.比较两数大小,存更小的,以确保是非递减序列elif (nums1[p1] <= nums2[p2]):sorted.append(nums1[p1])p1 += 1else:sorted.append(nums2[p2])p2 += 1nums1[:] = sorted

2. 删除有序数组中的重复元素

题目描述:
给你一个 非严格递增排列 的数组 nums ,请你 原地 删除重复出现的元素,使每个元素 只出现一次 ,返回删除后数组的新长度。元素的 相对顺序 应该保持 一致 。然后返回 nums 中唯一元素的个数。
考虑 nums 的唯一元素的数量为 k ,你需要做以下事情确保你的题解可以被通过:
更改数组 nums ,使 nums 的前 k 个元素包含唯一元素,并按照它们最初在 nums 中出现的顺序排列。nums 的其余元素与 nums 的大小不重要。
返回 k 。
题目归纳:
首先分析该有序数组的特点
由于数组有序,且非严格递增
故对于任意 i < j,若有nums[i] = nums[j]
则有任意i <= k <= j,nums[i] = nums[k] = nums[j]
利用上述特点,使用快慢指针进行删除重复元素

解题思路:
快慢指针法。慢指针用来指向第一个(可能)遇到重复元素的位置处,而快指针寻找新元素,当快指针找到新元素,把新元素赋值给慢指针处做替换。

class Solution:def removeDuplicates(self, nums: List[int]) -> int:slow_p = 1 # 数组若只有一个元素,则下标为0, 这样的数组中不会有重复项for fast_p in range(1, len(nums), 1):if(nums[fast_p-1] != nums[fast_p]): # 快指针找到新元素,利用了任意i <= k <= j,nums[i] = nums[k] = nums[j]特性nums[slow_p] = nums[fast_p]slow_p += 1 # slow_p的增加是有条件的,要找到不相同的元素return slow_p

3. H 指数

题目描述:
给你一个整数数组 citations ,其中 citations[i] 表示研究者的第 i 篇论文被引用的次数。计算并返回该研究者的 h 指数。
根据维基百科上 h 指数的定义:h 代表“高引用次数” ,一名科研人员的 h 指数是指,他(她)至少发表h 篇论文,并且每篇论文至少被引用h 次。如果该 h 有多种可能的值,h 指数是最大的那个。
题目归纳:
H-index Wiki,我想,h 指数的基本思想是:论文发的越多,不一定代表水平越高,而是发的越多,也要引用的越多才行,引用数认为是发表数认为是,即有质有量 h 指数才高,可以看出原始的 h 指数有个缺点,如果论文发的少引用的多,h 指数也不会很高,也就是有质无量的 h 指数低,无质无量无质有量自然就更低了,这里把两个量的量纲统一了,就得到了下面的图。
H-index from wiki

解题思路:
(1) 排序法。将数组citations从高到底排列,h不断增加,直到引用数 h 无法增大,则返回 h 。对应上图,就是寻找到虚线和数据分布的“分界点”,在papers(citations)坐标轴上的值。
(2) 计数排序法。

Python3

排序法

时间复杂度: O ( n l o g 2 n ) O(nlog_{2}{n}) O(nlog2n) n n n为数组citations长度
空间复杂度: O ( l o g 2 n ) O(log_{2}{n}) O(log2n) n n n为数组citations长度

class Solution:def hIndex(self, citations: List[int]) -> int:sorted_citation = sorted(citations, reverse = True)# python里可以用分号在一行中分割语句,曾经python为了阅读的简便性,抛弃了分号,现在又拿回来了,会不会有一天,这些语言来一个大一统,赋值号居然还有:=,=这两种写法,想出:=的人我很好奇他个人的精神状态h = 0; i = 0; n = len(citations)while i < n and sorted_citation[i] > h:h += 1i += 1return h
计数排序法

【排序算法】计数排序 - bilibili
计数排序是一种非比较排序,比较排序的复杂度下限是O(nlogn)已经得到过论文证明。

class Solution:def hIndex(self, citations: List[int]) -> int:# 新建并维护一个数组citation_papers,来记录当前引用次数的论文有多少篇# 对于论文i引用次数citations[i]超过论文发表数len(citations)的情况,将其按总论文发表数len(citations)计算即可,这样排序的数的大小范围就可以降低至[0,n=len(citations)]# 从而计数排序的时间复杂度,就降低至O(n)。现实中,一个学者一辈子能发表的论文数量顶天了也就百来篇,再夸张点,一千篇,不需要考虑n是无穷增长的,这点大小对计数排序是恰到好处的,因为计数排序就适合范围不大的排序。n = len(citations); H_papers = 0 # H_papers: 符合H指数的论文数citation_papers = [0] * (n+1) # 生成计数排序数组,用到了python的扩充操作,此数组下标为citation,数组内容为paper数量# 计算计数排序数组for c in citations:if c >= n:             # 引用次数超过论文发表数,引用次数按发表论文数计算citation_papers[n] += 1else:citation_papers[c] += 1# 倒序遍历for citation in range(n, -1, -1): # (-1, n] step = -1,实际上的下标范围即[0,n]H_papers += citation_papers[citation]if citation <= H_papers:return citationreturn 0
二分查找

这篇关于Leetcod面试经典150题刷题记录——数组 / 字符串篇的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/443734

相关文章

关于rpc长连接与短连接的思考记录

《关于rpc长连接与短连接的思考记录》文章总结了RPC项目中长连接和短连接的处理方式,包括RPC和HTTP的长连接与短连接的区别、TCP的保活机制、客户端与服务器的连接模式及其利弊分析,文章强调了在实... 目录rpc项目中的长连接与短连接的思考什么是rpc项目中的长连接和短连接与tcp和http的长连接短

Oracle查询优化之高效实现仅查询前10条记录的方法与实践

《Oracle查询优化之高效实现仅查询前10条记录的方法与实践》:本文主要介绍Oracle查询优化之高效实现仅查询前10条记录的相关资料,包括使用ROWNUM、ROW_NUMBER()函数、FET... 目录1. 使用 ROWNUM 查询2. 使用 ROW_NUMBER() 函数3. 使用 FETCH FI

Python MySQL如何通过Binlog获取变更记录恢复数据

《PythonMySQL如何通过Binlog获取变更记录恢复数据》本文介绍了如何使用Python和pymysqlreplication库通过MySQL的二进制日志(Binlog)获取数据库的变更记录... 目录python mysql通过Binlog获取变更记录恢复数据1.安装pymysqlreplicat

Java 字符数组转字符串的常用方法

《Java字符数组转字符串的常用方法》文章总结了在Java中将字符数组转换为字符串的几种常用方法,包括使用String构造函数、String.valueOf()方法、StringBuilder以及A... 目录1. 使用String构造函数1.1 基本转换方法1.2 注意事项2. 使用String.valu

python修改字符串值的三种方法

《python修改字符串值的三种方法》本文主要介绍了python修改字符串值的三种方法,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学... 目录第一种方法:第二种方法:第三种方法:在python中,字符串对象是不可变类型,所以我们没办法直接

JAVA中整型数组、字符串数组、整型数和字符串 的创建与转换的方法

《JAVA中整型数组、字符串数组、整型数和字符串的创建与转换的方法》本文介绍了Java中字符串、字符数组和整型数组的创建方法,以及它们之间的转换方法,还详细讲解了字符串中的一些常用方法,如index... 目录一、字符串、字符数组和整型数组的创建1、字符串的创建方法1.1 通过引用字符数组来创建字符串1.2

Servlet中配置和使用过滤器的步骤记录

《Servlet中配置和使用过滤器的步骤记录》:本文主要介绍在Servlet中配置和使用过滤器的方法,包括创建过滤器类、配置过滤器以及在Web应用中使用过滤器等步骤,文中通过代码介绍的非常详细,需... 目录创建过滤器类配置过滤器使用过滤器总结在Servlet中配置和使用过滤器主要包括创建过滤器类、配置过滤

C#中字符串分割的多种方式

《C#中字符串分割的多种方式》在C#编程语言中,字符串处理是日常开发中不可或缺的一部分,字符串分割是处理文本数据时常用的操作,它允许我们将一个长字符串分解成多个子字符串,本文给大家介绍了C#中字符串分... 目录1. 使用 string.Split2. 使用正则表达式 (Regex.Split)3. 使用

正则表达式高级应用与性能优化记录

《正则表达式高级应用与性能优化记录》本文介绍了正则表达式的高级应用和性能优化技巧,包括文本拆分、合并、XML/HTML解析、数据分析、以及性能优化方法,通过这些技巧,可以更高效地利用正则表达式进行复杂... 目录第6章:正则表达式的高级应用6.1 模式匹配与文本处理6.1.1 文本拆分6.1.2 文本合并6

python与QT联合的详细步骤记录

《python与QT联合的详细步骤记录》:本文主要介绍python与QT联合的详细步骤,文章还展示了如何在Python中调用QT的.ui文件来实现GUI界面,并介绍了多窗口的应用,文中通过代码介绍... 目录一、文章简介二、安装pyqt5三、GUI页面设计四、python的使用python文件创建pytho