MDL最小描述长度在分词研究中的应用

2023-12-01 22:18

本文主要是介绍MDL最小描述长度在分词研究中的应用,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

MDL(minimum description length,最小描述长度) 原理是 Rissane 在研究通用编码时提出的。其基本原理是对于一组给定的实例数据 D , 如果要对其进行保存 ,为了节省存储空间, 一般采用某种模型对其进行编码压缩,然后再保存压缩后的数据。同时, 为了以后正确恢复这些实例数据,将所用的模型也保存起来。所以需要保存的数据长度( 比特数) 等于这些实例数据进行编码压缩后的长度加上保存模型所需的数据长度,将该数据长度称为总描述长度。最小描述长度( MDL) 原理就是要求选择总描述长度最小的模型。

最小描述长度在分词中的应用也比较直接,就是将分词视为一种编码方式,如一个字符串,”iloveyou“ ,总共8个符号,就是对应的8个字母,经过分词后就是“i love you”,就只有3个符号,就是3个单词,这样总长度变小了,但是需要额外的信息来记录单词的信息,也就是模型。因此需要的总的长度不一定变小。

最小描述长度具体应用的分词中的计算方式,见paper “Shlomo Argamon, Navot Akiva, Amihood Amir, and Oren Kapah. Efficient unsupervised word segmentation using minimum description length. In  Coling 2004, 2004.”
其基本公式为:     
CODE(Data| L) + CODE( L)
其中L是词典,Data是语料,ODE函数表示描述数据需要的最小位数
两个部分中,CODE( L)就是描述词典所需的信息,也就是记录模型需要信息:CODE(L) = b*sum(length(w)),其中b表示描述字母集所需要的位数,如2个字母,需要的位数就是1bit,4个就是2bits,依次类推。w表示词典中词的长度 

CODE(Data|L)为分词后的语料,记录这样的语料需要的信息:
CODE(Data|L) = -sum[ C(w) * ( log(C(w))-  log(N) )  ]
其中C(w)为语料中词w的出现的次数,N为语料的包含总的词数。如语料为:Data =  w3 www2 ww3 则语料共有6个词,其中w3的数量为2,w1为1..., 这个里面的log应该是以2为底的

举一个简单的例子,两行已经分好词的语料:
a b
ab a ba

字典部分:
共有两个字符,则b=1,即为用一个bit就可以表示a,b两个字母了
共有4个词,a,b,ab,ba
其长度和为1+1+2+2 = 6
则CODE(L)部分的值为1*6 = 6

分词后的语料部分:
语料长度为5个词,则N=5
其中:
a出现2次,则对应的值为2*( log(2)-log(5) ) = -2.64
b,ab,ba均出现1次,对应的值均为1*( log(1)-log(5) ) =-2.32

则CODE(Data|L) ,也就是语料部分的值为 :
-1*(-2.64 -2.32-2.32-2.32 ) = 9.61

则该词语料的总的描述长度 mdl=6+9.61 = 15.61

这个数组其实是描述这个分词方法和对应语料需要的总的信息量。对其取2为底的对数,则值为log2(15.61)=3.9,也就是编码这个分词后的数据,需要的最小2进制位数是4位。
相应的,我们可以计算一下,不经分词,就是只用字母来表示这个语料,需要的信息量约为8.8966,显然,这样的分词方式是得不偿失的,当然,如果词出现很多,分词后记录语料的信息量会是少的。

对应的python代码如下,其中输入文件为分词好的语料,词直接用空格隔开,一行一个句子

[python]  view plain copy
在CODE上查看代码片 派生到我的代码片
  1. #!/usr/bin/env python  
  2. #coding=utf-8  
  3. import sys   
  4. import math  
  5. reload(sys)  
  6. sys.setdefaultencoding('utf-8')  
  7.   
  8. #MDL,(minimum description length),最小描述长度  
  9. #输入,分好词的文件,格式为 词 空格 词 空格...  
  10. word_dict = {}  
  11.   
  12. #加载语料,统计词和词频,用于后续的处理  
  13. def load_corpus(word_seq_file_name):  
  14.     data_file = open(word_seq_file_name, "r")  
  15.     for line in data_file:  
  16.         line = line.strip()  
  17.         word_list = line.split(" ")  
  18.         for word in word_list:  
  19.             word_dict.setdefault(word,float(0))  
  20.             word_dict[word] += 1  
  21.     return 0  
  22.   
  23. #获得字母的描述长度值  
  24. #目前只处理单字节的字母  
  25. def get_letter_info():  
  26.     letter_dict = {}  
  27.     #统计letter  
  28.     for word in word_dict:  
  29.         for letter in word:  
  30.             letter_dict.setdefault(letter, 0)  
  31.             letter_dict[letter] += 1  
  32.       
  33.     #计算字母的描述长度  
  34.     letter_num = float(len(letter_dict))  
  35.     letter_info = math.log(letter_num, 2)  
  36.   
  37.     return letter_info  
  38.   
  39. #获得词典的词的总长度  
  40. def get_dict_info():  
  41.     word_length_sum = 0  
  42.     for word in word_dict:  
  43.         word_length_sum += len(word)  
  44.   
  45.     return word_length_sum  
  46.   
  47. #获得单词序列的描述长度  
  48. def get_word_seq_info():  
  49.     word_info_sum = 0  
  50.     freq_sum = sum(word_dict.itervalues()) #所有词的词频  
  51.     for word in word_dict:  
  52.         word_freq = word_dict[word]  
  53.         word_info = word_freq * ( math.log(word_freq, 2) - math.log(freq_sum, 2) )  
  54.         word_info_sum += word_info  
  55.       
  56.     word_seq_info = -1*word_info_sum  
  57.     return word_seq_info  
  58.   
  59. #获得最终的mdl  
  60. def get_mdl():  
  61.     letter_info = get_letter_info()  
  62.     dict_info = get_dict_info()  
  63.     word_seq_info = get_word_seq_info()  
  64.     mdl = letter_info*dict_info + word_seq_info  
  65.     return mdl  
  66.   
  67. if __name__=="__main__":  
  68.     if len(sys.argv)!=2:  
  69.         print "please input word corpus filename"  
  70.         sys.exit()  
  71.     load_corpus(sys.argv[1])  
  72.     print get_mdl()  

数据文件例子:

[html]  view plain copy
在CODE上查看代码片 派生到我的代码片
  1. a b  
  2. ab a ba  

处理这个文件,获得的值得应该是
15.61

这篇关于MDL最小描述长度在分词研究中的应用的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/442885

相关文章

5分钟获取deepseek api并搭建简易问答应用

《5分钟获取deepseekapi并搭建简易问答应用》本文主要介绍了5分钟获取deepseekapi并搭建简易问答应用,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需... 目录1、获取api2、获取base_url和chat_model3、配置模型参数方法一:终端中临时将加

JavaScript中的isTrusted属性及其应用场景详解

《JavaScript中的isTrusted属性及其应用场景详解》在现代Web开发中,JavaScript是构建交互式应用的核心语言,随着前端技术的不断发展,开发者需要处理越来越多的复杂场景,例如事件... 目录引言一、问题背景二、isTrusted 属性的来源与作用1. isTrusted 的定义2. 为

Python调用另一个py文件并传递参数常见的方法及其应用场景

《Python调用另一个py文件并传递参数常见的方法及其应用场景》:本文主要介绍在Python中调用另一个py文件并传递参数的几种常见方法,包括使用import语句、exec函数、subproce... 目录前言1. 使用import语句1.1 基本用法1.2 导入特定函数1.3 处理文件路径2. 使用ex

将Python应用部署到生产环境的小技巧分享

《将Python应用部署到生产环境的小技巧分享》文章主要讲述了在将Python应用程序部署到生产环境之前,需要进行的准备工作和最佳实践,包括心态调整、代码审查、测试覆盖率提升、配置文件优化、日志记录完... 目录部署前夜:从开发到生产的心理准备与检查清单环境搭建:打造稳固的应用运行平台自动化流水线:让部署像

Linux中Curl参数详解实践应用

《Linux中Curl参数详解实践应用》在现代网络开发和运维工作中,curl命令是一个不可或缺的工具,它是一个利用URL语法在命令行下工作的文件传输工具,支持多种协议,如HTTP、HTTPS、FTP等... 目录引言一、基础请求参数1. -X 或 --request2. -d 或 --data3. -H 或

在Ubuntu上部署SpringBoot应用的操作步骤

《在Ubuntu上部署SpringBoot应用的操作步骤》随着云计算和容器化技术的普及,Linux服务器已成为部署Web应用程序的主流平台之一,Java作为一种跨平台的编程语言,具有广泛的应用场景,本... 目录一、部署准备二、安装 Java 环境1. 安装 JDK2. 验证 Java 安装三、安装 mys

Python中构建终端应用界面利器Blessed模块的使用

《Python中构建终端应用界面利器Blessed模块的使用》Blessed库作为一个轻量级且功能强大的解决方案,开始在开发者中赢得口碑,今天,我们就一起来探索一下它是如何让终端UI开发变得轻松而高... 目录一、安装与配置:简单、快速、无障碍二、基本功能:从彩色文本到动态交互1. 显示基本内容2. 创建链

关于Java内存访问重排序的研究

《关于Java内存访问重排序的研究》文章主要介绍了重排序现象及其在多线程编程中的影响,包括内存可见性问题和Java内存模型中对重排序的规则... 目录什么是重排序重排序图解重排序实验as-if-serial语义内存访问重排序与内存可见性内存访问重排序与Java内存模型重排序示意表内存屏障内存屏障示意表Int

Node.js 中 http 模块的深度剖析与实战应用小结

《Node.js中http模块的深度剖析与实战应用小结》本文详细介绍了Node.js中的http模块,从创建HTTP服务器、处理请求与响应,到获取请求参数,每个环节都通过代码示例进行解析,旨在帮... 目录Node.js 中 http 模块的深度剖析与实战应用一、引言二、创建 HTTP 服务器:基石搭建(一

java中VO PO DTO POJO BO DO对象的应用场景及使用方式

《java中VOPODTOPOJOBODO对象的应用场景及使用方式》文章介绍了Java开发中常用的几种对象类型及其应用场景,包括VO、PO、DTO、POJO、BO和DO等,并通过示例说明了它... 目录Java中VO PO DTO POJO BO DO对象的应用VO (View Object) - 视图对象