python实现two way ANOVA

2023-12-01 09:44
文章标签 python 实现 two way anova

本文主要是介绍python实现two way ANOVA,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

文章目录

  • 目的:用python实现two way ANOVA 双因素方差分析
    • 1. python代码实现
      • 1 加载python库
      • 2 加载数据
      • 3 统计样本重复次数,均值和方差,绘制箱线图
      • 4 查看people和group是否存在交互效应
      • 5 模型拟合与Two Way ANOVA:双因素方差分析
      • 6 多重比较,post hoc t-tests
      • 7 计算效应量Correlation family: η^2、ω^2 (适用于 Correlational data)
    • 2. 双因素方差分析理论和公式
    • 3. 效应量分析

目的:用python实现two way ANOVA 双因素方差分析

1. python代码实现

在这里插入图片描述

1 加载python库

import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
from scipy import stats   from statsmodels.formula.api import ols                     # 最小二乘法拟合
from statsmodels.stats.anova import anova_lm                # 方差分析
from statsmodels.stats.multicomp import pairwise_tukeyhsd   # post Hoc t_test

2 加载数据

value(month):治疗2周的各类被试的血糖值
group(PhysicalTherapy):表示有两种治疗方案,sham组(1)和rTMS组(2)
people(PsychiatricTreatment):表示有3种被试,年轻健康组(3)、老年健康组(1)、老年患病组(2)

df = pd.read_excel('data//TMS_demoData1.xlsx')
data = pd.DataFrame(df)
data.head(24)
valuegrouppeople
011.011
19.412
212.513
39.611
49.612
511.513
610.811
79.612
810.513
910.511
1010.812
1112.513
1210.521
1310.822
1410.523
1511.521
1610.522
1711.823
1812.021
1910.522
2011.523
2111.821
2210.222
2311.523

3 统计样本重复次数,均值和方差,绘制箱线图

data.describe()
valuegrouppeople
count24.00000024.00000024.000000
mean10.8916671.5000002.000000
std0.8895120.5107540.834058
min9.4000001.0000001.000000
25%10.5000001.0000001.000000
50%10.8000001.5000002.000000
75%11.5000002.0000003.000000
max12.5000002.0000003.000000
fig, ax = plt.subplots(1,2,figsize=(12,6),dpi=600)  # 1行2列的子图
sns.boxplot(x = 'group', y = 'value', data = data, ax = ax[0])
sns.boxplot(x = 'people', y = 'value', data = data, ax = ax[1])## 可以看出rTMS组的血糖水平sham组的高,因此我们得看这是由于治疗方案引起的还是由于随机误差引起的
## 即从试验结果推断,因素 group 对试验结果有无显著影响,即当 group 取不同水平时试验结果有无显著差别
## 第5步方差分析的结果显示,因素 group 对试验结果无显著影响(p = 0.149),即当 group 取不同水平时试验结果无显著差别

请添加图片描述

4 查看people和group是否存在交互效应

  • 主效应:一个自变量变化时,因变量所出现的变化。
  • 交互效应:反应的是两个或多个自变量对因变量的联合影响,这种影响不能简单的通过自变量的主效应相加获得。
fig, ax = plt.subplots(1,2,figsize=(12,6),dpi=600)  # 1行2列的子图
sns.lineplot(y='value', x = 'people', hue = 'group', palette="tab10", data=data, ax = ax[0])
sns.lineplot(y='value', x = 'group', hue = 'people', palette="tab10", data=data, ax = ax[1])

请添加图片描述

从上图可以看出,people 2和3之间是存在交互效应的,下面可以通过方差分析来检验

5 模型拟合与Two Way ANOVA:双因素方差分析

model = ols('value ~C(group) + C(people) + C(group):C(people)', data = data).fit()
anova_table = anova_lm(model, type = 2)
pd.DataFrame(anova_table)
dfsum_sqmean_sqFPR(>F)
C(group)1.00.9600000.9600002.2721890.149064
C(people)2.07.4858333.7429178.8589740.002096
C(group):C(people)2.02.1475001.0737502.5414200.106623
Residual18.07.6050000.422500NaNNaN

根据上述结果可以发现:

  1. people组是小于0.05的,存在显著性差异。即people因素对指标value有显著性影响。
  2. group和两者的交互效应是大于0.05的,接受假设,不存在显著性差异,不存在交互效应。
  3. 因为people对value存在显著性差异,我们得进行进一步的T检验,查看是那两组之间存在显著性差异。
print(model.summary())
                            OLS Regression Results                            
==============================================================================
Dep. Variable:                  value   R-squared:                       0.582
Model:                            OLS   Adj. R-squared:                  0.466
Method:                 Least Squares   F-statistic:                     5.015
Date:                Thu, 30 Nov 2023   Prob (F-statistic):            0.00473
Time:                        17:55:19   Log-Likelihood:                -20.264
No. Observations:                  24   AIC:                             52.53
Df Residuals:                      18   BIC:                             59.60
Df Model:                           5                                         
Covariance Type:            nonrobust                                         
================================================================================================coef    std err          t      P>|t|      [0.025      0.975]
------------------------------------------------------------------------------------------------
Intercept                       10.4750      0.325     32.231      0.000       9.792      11.158
C(group)[T.2]                    0.9750      0.460      2.121      0.048       0.009       1.941
C(people)[T.2]                  -0.6250      0.460     -1.360      0.191      -1.591       0.341
C(people)[T.3]                   1.2750      0.460      2.774      0.013       0.309       2.241
C(group)[T.2]:C(people)[T.2]    -0.3250      0.650     -0.500      0.623      -1.691       1.041
C(group)[T.2]:C(people)[T.3]    -1.4000      0.650     -2.154      0.045      -2.766      -0.034
==============================================================================
Omnibus:                        1.196   Durbin-Watson:                   2.279
Prob(Omnibus):                  0.550   Jarque-Bera (JB):                1.081
Skew:                          -0.461   Prob(JB):                        0.582
Kurtosis:                       2.518   Cond. No.                         9.77
==============================================================================Notes:
[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.
print(model.params)
# 拟合公式
# Yij = 10.475*G(1)*P(1) + 0.9150*G(2) - 0.625*P(2) + 1.275*P(3) - 0.325*G(2)*P(2) -1.4*G(2)*P(3)
Intercept                       10.475
C(group)[T.2]                    0.975
C(people)[T.2]                  -0.625
C(people)[T.3]                   1.275
C(group)[T.2]:C(people)[T.2]    -0.325
C(group)[T.2]:C(people)[T.3]    -1.400
dtype: float64

曲线拟合出来的实为每一种组合的均值:拟合参数验算
*** 无论是普通线性模型还是广义线性模型,预测的都是自变量x取特定值时因变量y的平均值。
因变量y的实际取值与其平均值之差被称为误差项,而误差的分布很大程度上决定了使用什么模型。

# Yij = 10.475*G(1)*P(1) + 0.9150*G(2) - 0.625*P(2) + 1.275*P(3) - 0.325*G(2)*P(2) -1.4*G(2)*P(3)
# GPxx:实际值
# Y_GPxx:预测值
''' Group = 1,People = 1 这个作为截距,后面的每一种组合要加上Intercept'''
Intercept = (11+9.6+10.8+10.5)/4 ''' Group = 1, People = 2 '''
GP12 = (9.4+9.6+9.6+10.8)/4
Y_GP12 = 10.475 - 0.625''' Group = 1, People = 3 '''
GP13 = (12.5+11.5+10.5+12.5)/4
Y_GP13 = 10.475 + 1.275''' Group = 2, People = 1 '''
GP21 = (10.5+11.5+12+11.8)/4
Y_GP21 = 10.475 + 0.9105''' Group = 2, People = 2 '''
GP22 = (10.8+10.5+10.5+10.2)/4
Y_GP22 = 10.475 + 0.9105 - 0.625 - 0.325''' Group = 2, People = 3 '''
GP23 = (10.5+11.8+11.5+11.5)/4
Y_GP23 = 10.475 + 0.9105 + 1.275 - 1.4print('Intercept:', Intercept)
print('GP12:',GP12, 'Y_GP12:',Y_GP12)
print('GP13:',GP13, 'Y_GP13:',Y_GP13)
print('GP21:',GP21, 'Y_GP21:',Y_GP21)
print('GP22:',GP22, 'Y_GP22:',Y_GP22)
print('GP23:',GP23, 'Y_GP23:',Y_GP23)
Intercept: 10.475000000000001
GP12: 9.850000000000001 Y_GP12: 9.85
GP13: 11.75 Y_GP13: 11.75
GP21: 11.45 Y_GP21: 11.3855
GP22: 10.5 Y_GP22: 10.435500000000001
GP23: 11.325 Y_GP23: 11.2605

6 多重比较,post hoc t-tests

print("people因子不同水平的比较结果:", pairwise_tukeyhsd(data['value'], data['people']))
print("###########################\n")
print("group 因子不同水平的比较结果:", pairwise_tukeyhsd(data['value'], data['group']))print("结果说明: reject=True,说明两组之间有显著性差异。")
people因子不同水平的比较结果: Multiple Comparison of Means - Tukey HSD, FWER=0.05
===================================================
group1 group2 meandiff p-adj   lower  upper  reject
---------------------------------------------------1      2  -0.7875 0.0935 -1.6876 0.1126  False1      3    0.575 0.2635 -0.3251 1.4751  False2      3   1.3625 0.0028  0.4624 2.2626   True
---------------------------------------------------
###########################group 因子不同水平的比较结果: Multiple Comparison of Means - Tukey HSD, FWER=0.05
===================================================
group1 group2 meandiff p-adj   lower  upper  reject
---------------------------------------------------1      2      0.4 0.2803 -0.3495 1.1495  False
---------------------------------------------------
结果说明: reject=True,说明两组之间有显著性差异。

7 计算效应量Correlation family: η2、ω2 (适用于 Correlational data)

神奇的发现:计算方式不同,但是η^2 = ω^2

# η^2 = (F_A X df_A)/(F_A X df_A +df_e)
yitaG = (2.272 * 1)/(2.272 * 1 + 18)
yitaP = (8.86 * 2)/(8.86 * 2 + 18)
yitaGP = (2.5414 * 2)/(2.5414 * 2 + 18)
print('Group的效应量', yitaG)
print('People的效应量',yitaP)
print('GroupxPeople的效应量',yitaGP)
Group的效应量 0.11207576953433307
People的效应量 0.49608062709966405
GroupxPeople的效应量 0.22019858942589288
# ω^2 = sq_A /(sq_A + sq_e)
oumigaG = 0.96/(0.96 + 7.605)
oumigaP = 7.486/(7.486 + 7.605)
oumigaGP = 2.147/(2.147 + 7.605)
print('Group的效应量', oumigaG)
print('People的效应量',oumigaP)
print('GroupxPeople的效应量',oumigaGP)
Group的效应量 0.11208406304728544
People的效应量 0.49605725266715256
GroupxPeople的效应量 0.22015996718621816

2. 双因素方差分析理论和公式

参考:https://zhuanlan.zhihu.com/p/33357167

3. 效应量分析

参考:https://zhuanlan.zhihu.com/p/137779235

这篇关于python实现two way ANOVA的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/440657

相关文章

使用Java解析JSON数据并提取特定字段的实现步骤(以提取mailNo为例)

《使用Java解析JSON数据并提取特定字段的实现步骤(以提取mailNo为例)》在现代软件开发中,处理JSON数据是一项非常常见的任务,无论是从API接口获取数据,还是将数据存储为JSON格式,解析... 目录1. 背景介绍1.1 jsON简介1.2 实际案例2. 准备工作2.1 环境搭建2.1.1 添加

Java实现任务管理器性能网络监控数据的方法详解

《Java实现任务管理器性能网络监控数据的方法详解》在现代操作系统中,任务管理器是一个非常重要的工具,用于监控和管理计算机的运行状态,包括CPU使用率、内存占用等,对于开发者和系统管理员来说,了解这些... 目录引言一、背景知识二、准备工作1. Maven依赖2. Gradle依赖三、代码实现四、代码详解五

java如何分布式锁实现和选型

《java如何分布式锁实现和选型》文章介绍了分布式锁的重要性以及在分布式系统中常见的问题和需求,它详细阐述了如何使用分布式锁来确保数据的一致性和系统的高可用性,文章还提供了基于数据库、Redis和Zo... 目录引言:分布式锁的重要性与分布式系统中的常见问题和需求分布式锁的重要性分布式系统中常见的问题和需求

SpringBoot基于MyBatis-Plus实现Lambda Query查询的示例代码

《SpringBoot基于MyBatis-Plus实现LambdaQuery查询的示例代码》MyBatis-Plus是MyBatis的增强工具,简化了数据库操作,并提高了开发效率,它提供了多种查询方... 目录引言基础环境配置依赖配置(Maven)application.yml 配置表结构设计demo_st

使用Python绘制蛇年春节祝福艺术图

《使用Python绘制蛇年春节祝福艺术图》:本文主要介绍如何使用Python的Matplotlib库绘制一幅富有创意的“蛇年有福”艺术图,这幅图结合了数字,蛇形,花朵等装饰,需要的可以参考下... 目录1. 绘图的基本概念2. 准备工作3. 实现代码解析3.1 设置绘图画布3.2 绘制数字“2025”3.3

python使用watchdog实现文件资源监控

《python使用watchdog实现文件资源监控》watchdog支持跨平台文件资源监控,可以检测指定文件夹下文件及文件夹变动,下面我们来看看Python如何使用watchdog实现文件资源监控吧... python文件监控库watchdogs简介随着Python在各种应用领域中的广泛使用,其生态环境也

el-select下拉选择缓存的实现

《el-select下拉选择缓存的实现》本文主要介绍了在使用el-select实现下拉选择缓存时遇到的问题及解决方案,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的... 目录项目场景:问题描述解决方案:项目场景:从左侧列表中选取字段填入右侧下拉多选框,用户可以对右侧

Python中构建终端应用界面利器Blessed模块的使用

《Python中构建终端应用界面利器Blessed模块的使用》Blessed库作为一个轻量级且功能强大的解决方案,开始在开发者中赢得口碑,今天,我们就一起来探索一下它是如何让终端UI开发变得轻松而高... 目录一、安装与配置:简单、快速、无障碍二、基本功能:从彩色文本到动态交互1. 显示基本内容2. 创建链

Java调用Python代码的几种方法小结

《Java调用Python代码的几种方法小结》Python语言有丰富的系统管理、数据处理、统计类软件包,因此从java应用中调用Python代码的需求很常见、实用,本文介绍几种方法从java调用Pyt... 目录引言Java core使用ProcessBuilder使用Java脚本引擎总结引言python

python 字典d[k]中key不存在的解决方案

《python字典d[k]中key不存在的解决方案》本文主要介绍了在Python中处理字典键不存在时获取默认值的两种方法,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,... 目录defaultdict:处理找不到的键的一个选择特殊方法__missing__有时候为了方便起见,