arm linux spin_lock 原理

2023-11-30 12:58
文章标签 linux 原理 spin arm lock

本文主要是介绍arm linux spin_lock 原理,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

aarch32 linux4.9 

spin lock的目的是为了让cpu在等待资源的时候自旋在那里而不是去睡眠进行上下文切换,所以spin_lock中做的事情不能太多要不然反而会降低系统性能,事情的耗时数量级应该是数个tick,spi_lock相关的常用的api如下:

static __always_inline void spin_lock(spinlock_t *lock)static __always_inline void spin_lock_bh(spinlock_t *lock)static __always_inline void spin_lock_irq(spinlock_t *lock)spin_lock_irqsave(lock, flags)static __always_inline void spin_unlock(spinlock_t *lock);static __always_inline void spin_unlock_bh(spinlock_t *lock)static __always_inline void spin_unlock_irq(spinlock_t *lock)static __always_inline void spin_unlock_irqrestore(spinlock_t *lock, unsigned long flags)

spin_lock  spin_unlock  //关抢占

spin_lock_bh  spin_unlock_bh   //bh意指中断bottom half

spin_lock_irq  spin_unlock_irq    //中断上下文中的spin_lock,先关抢占然后会把当前cpu的中断disable  unlock的时候打开

spin_lock_irqsave  spin_unlock_irqrestore    //中断上下文中使用,先关抢占然后会把当前cpu的cpsr的中断状态保存下来然后restore的时候恢复

以一个复杂的smp下的竞态为例说明下使用方式

每个cpu的多个task与irq都需要访问某个资源的时候,形成的核内和核间的竞争,spin_lock的使用方式如下图

以spin_lock_irqsave为例说明下spin_lock是怎样实现自旋的,自旋到底是个什么状态

#define spin_lock_irqsave(lock, flags)				\
do {								\raw_spin_lock_irqsave(spinlock_check(lock), flags);	\
} while (0)#define raw_spin_lock_irqsave(lock, flags)			\do {						\typecheck(unsigned long, flags);	\flags = _raw_spin_lock_irqsave(lock);	\} while (0)unsigned long __lockfunc _raw_spin_lock_irqsave(raw_spinlock_t *lock)
{return __raw_spin_lock_irqsave(lock);
}static inline unsigned long __raw_spin_lock_irqsave(raw_spinlock_t *lock)
{unsigned long flags;local_irq_save(flags);preempt_disable();spin_acquire(&lock->dep_map, 0, 0, _RET_IP_);/** On lockdep we dont want the hand-coded irq-enable of* do_raw_spin_lock_flags() code, because lockdep assumes* that interrupts are not re-enabled during lock-acquire:*/
#ifdef CONFIG_LOCKDEPLOCK_CONTENDED(lock, do_raw_spin_trylock, do_raw_spin_lock);
#elsedo_raw_spin_lock_flags(lock, &flags);
#endifreturn flags;
}static inline void
do_raw_spin_lock_flags(raw_spinlock_t *lock, unsigned long *flags) __acquires(lock)
{__acquire(lock);arch_spin_lock_flags(&lock->raw_lock, *flags);
}#define arch_spin_lock_flags(lock, flags) arch_spin_lock(lock)static inline void arch_spin_lock(arch_spinlock_t *lock)
{unsigned long tmp;u32 newval;arch_spinlock_t lockval;prefetchw(&lock->slock);__asm__ __volatile__(
"1:	ldrex	%0, [%3]\n"
"	add	%1, %0, %4\n"
"	strex	%2, %1, [%3]\n"
"	teq	%2, #0\n"
"	bne	1b": "=&r" (lockval), "=&r" (newval), "=&r" (tmp): "r" (&lock->slock), "I" (1 << TICKET_SHIFT): "cc");while (lockval.tickets.next != lockval.tickets.owner) {wfe();lockval.tickets.owner = ACCESS_ONCE(lock->tickets.owner);}smp_mb();//清流水线  memory barrir
}

最终调用到的arch_spi_lock函数,ldrex和strex是arm 支持的原子操作指令,关于这两条命令参考博客https://blog.csdn.net/roland_sun/article/details/47670099

#define TICKET_SHIFT 16 
typedef struct { 
union { 
u32 slock; 
struct __raw_tickets { u16 owner; u16 next; } tickets; 
}; 
} arch_spinlock_t;

ldrex 取lock的成员的值暂存到lock_val

add new_val= lock_val + 0x10000  lock的next++

strex new_val 到lock成员,操作返回值tmp

如果返回值是0 跳到1b继续循环执行

因为ldrex声明了这段区域后只有核内,核间的其他最先更新strex 更新该内存的task才会继续执行下去,这组原子操作的目的是保证当前只有一个cpu 能获取,在cpu和内存之间搭了个独木桥。 spin_unlock的时候会把 owner++; 所以会while到next 与owner相等,spin_lock初始化的时候owner和next都是0,表示unlocked。当第一个个thread调用spin_lock来申请lock的时候,owner和next相等,表示unlocked,这时候该thread持有该spin lock,并且执行next++,也就是将next设定为1。没有其他thread来竞争就调用spin_unlock执行owner++,也就是将owner设定为1。next++之后等于2,后面的task想要持有锁的话分配当然也会执行next++,接着next值不断的增加,如果没有unlock则owner的值不动,直到调用spin_unlock owner++之后等于2满足条件才会截接着spin_lock继续执行下去

 

 

这篇关于arm linux spin_lock 原理的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/437119

相关文章

Linux使用nload监控网络流量的方法

《Linux使用nload监控网络流量的方法》Linux中的nload命令是一个用于实时监控网络流量的工具,它提供了传入和传出流量的可视化表示,帮助用户一目了然地了解网络活动,本文给大家介绍了Linu... 目录简介安装示例用法基础用法指定网络接口限制显示特定流量类型指定刷新率设置流量速率的显示单位监控多个

ElasticSearch+Kibana通过Docker部署到Linux服务器中操作方法

《ElasticSearch+Kibana通过Docker部署到Linux服务器中操作方法》本文介绍了Elasticsearch的基本概念,包括文档和字段、索引和映射,还详细描述了如何通过Docker... 目录1、ElasticSearch概念2、ElasticSearch、Kibana和IK分词器部署

Linux流媒体服务器部署流程

《Linux流媒体服务器部署流程》文章详细介绍了流媒体服务器的部署步骤,包括更新系统、安装依赖组件、编译安装Nginx和RTMP模块、配置Nginx和FFmpeg,以及测试流媒体服务器的搭建... 目录流媒体服务器部署部署安装1.更新系统2.安装依赖组件3.解压4.编译安装(添加RTMP和openssl模块

linux下多个硬盘划分到同一挂载点问题

《linux下多个硬盘划分到同一挂载点问题》在Linux系统中,将多个硬盘划分到同一挂载点需要通过逻辑卷管理(LVM)来实现,首先,需要将物理存储设备(如硬盘分区)创建为物理卷,然后,将这些物理卷组成... 目录linux下多个硬盘划分到同一挂载点需要明确的几个概念硬盘插上默认的是非lvm总结Linux下多

linux进程D状态的解决思路分享

《linux进程D状态的解决思路分享》在Linux系统中,进程在内核模式下等待I/O完成时会进入不间断睡眠状态(D状态),这种状态下,进程无法通过普通方式被杀死,本文通过实验模拟了这种状态,并分析了如... 目录1. 问题描述2. 问题分析3. 实验模拟3.1 使用losetup创建一个卷作为pv的磁盘3.

MySQL中的MVCC底层原理解读

《MySQL中的MVCC底层原理解读》本文详细介绍了MySQL中的多版本并发控制(MVCC)机制,包括版本链、ReadView以及在不同事务隔离级别下MVCC的工作原理,通过一个具体的示例演示了在可重... 目录简介ReadView版本链演示过程总结简介MVCC(Multi-Version Concurr

Linux环境变量&&进程地址空间详解

《Linux环境变量&&进程地址空间详解》本文介绍了Linux环境变量、命令行参数、进程地址空间以及Linux内核进程调度队列的相关知识,环境变量是系统运行环境的参数,命令行参数用于传递给程序的参数,... 目录一、初步认识环境变量1.1常见的环境变量1.2环境变量的基本概念二、命令行参数2.1通过命令编程

Linux之进程状态&&进程优先级详解

《Linux之进程状态&&进程优先级详解》文章介绍了操作系统中进程的状态,包括运行状态、阻塞状态和挂起状态,并详细解释了Linux下进程的具体状态及其管理,此外,文章还讨论了进程的优先级、查看和修改进... 目录一、操作系统的进程状态1.1运行状态1.2阻塞状态1.3挂起二、linux下具体的状态三、进程的

Linux编译器--gcc/g++使用方式

《Linux编译器--gcc/g++使用方式》文章主要介绍了C/C++程序的编译过程,包括预编译、编译、汇编和链接四个阶段,并详细解释了每个阶段的作用和具体操作,同时,还介绍了调试和发布版本的概念... 目录一、预编译指令1.1预处理功能1.2指令1.3问题扩展二、编译(生成汇编)三、汇编(生成二进制机器语

Rsnapshot怎么用? 基于Rsync的强大Linux备份工具使用指南

《Rsnapshot怎么用?基于Rsync的强大Linux备份工具使用指南》Rsnapshot不仅可以备份本地文件,还能通过SSH备份远程文件,接下来详细介绍如何安装、配置和使用Rsnaps... Rsnapshot 是一款开源的文件系统快照工具。它结合了 Rsync 和 SSH 的能力,可以帮助你在 li