福州大学《嵌入式系统综合设计》 实验八:FFMPEG视频编码

本文主要是介绍福州大学《嵌入式系统综合设计》 实验八:FFMPEG视频编码,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

一、实验目的

掌握使用算能平台进行视频编码的流程,包括开发主机环境与云平台的配置,视频编码程序的编写与理解,代码的编译、运行以及学习使用码流分析工具分析视频压缩码流等。

二、实验内容

搭建实验开发环境,编译并运行编码程序,对视频文件进行编码。并学习利用ffprobe程序分析详细的封装格式和视频流信息,进一步学习利用码流软件Elecard StreamEye查看编码后视频码流文件。

三、开发环境

开发主机:Ubuntu 20.04.6 LTS

硬件:算能SE5

四、实验器材

开发主机 + 云平台(或SE5硬件)

五、实验过程与结论

FFMPEG编码原理与流程

FFMPEG是目前最为流行的视频编解码开源软件,大部分的音视频领域的开发者都会采用FFMPEG进行编解码。FFMPEG编解码软件不仅支持H264H265编解码,还支持包括视频RTSP拉流、视频格式转换等功能。目前的OPENCV其内部的编解码部分也是采用FFMPEG进行视频编解码。算能平台也支持FFMPEG编解码接口,提供了和标准FFMPEG一样相对统一的编解码接口,只是在内部进行了硬件加速处理,相比开源FFMPEG实现更高效的视频编解码能力。以BM1684为例,支持最大支持1080P@960fpsH264解码和最大支持1080P@1000fpsH265解码。算能平台的FFMPEG简称BM-FFMPEG,在标准的FFMPEG上做了二次封装,其代码也实现开源,具体请参考https://gitee.com/sophon-ai/bm_ffmpeg

并且,可以通过如下网址查看具体的操作使用说明:

https://doc.sophgo.com/docs/2.7.0/docs_latest_release/multimedia_guide/Multimedia_User_Guide_zh.pdf

算能平台的bmnnsdk2中提供了相关的代码实例。具体见网址如下:

https://github.com/sophon-ai-algo/examples/tree/3.0.0/multimedia

下面,本实例以算能平台FFMPEG编码为例,介绍其使用方法。算能平台的FFMPEG编码流程和标准的FFMPEG编码流程一致,如下图所示:

根据上述流程,下面介绍本实例的关键代码如下:

包含相关头文件

由于涉及到ffmpeg相关编程,因此需要在工程中添加ffmpeg相关的头文件,具体如下:

#include <iostream>
extern "C" {#include "libavcodec/avcodec.h"#include "libswscale/swscale.h"#include "libavutil/imgutils.h"#include "libavformat/avformat.h"#include "libavfilter/buffersink.h"#include "libavfilter/buffersrc.h"#include "libavutil/opt.h"#include "libavutil/pixdesc.h"
}
#define STEP_ALIGNMENT 32

主函数

为了使整个程序模块更为清晰,本实例在将ffmpeg编码器初始化与开启相关内容和编码写文件相关内容分别封装为2个独立的函数。然后在主线程中进行调用,具体如下:

int main(int argc, char **argv)
{int soc_idx      = 0;int enc_id       = AV_CODEC_ID_H264;              //AV_CODEC_ID_H265int inputformat  = AV_PIX_FMT_YUV420P;int framerate    = 30;int width        = 1920;int height       = 1080;int bitrate      = 1000000;                       //bits per sencondchar *input_file = "1080p.yuv";                   //input yuv file namechar *output_file= "test.mp4";                    //output yuv file nameint ret;av_log_set_level(AV_LOG_DEBUG);                   //set debug levelint stride = (width + STEP_ALIGNMENT - 1) & ~(STEP_ALIGNMENT - 1);int aligned_input_size = stride * height*3/2;// TODOuint8_t *aligned_input = (uint8_t*)av_mallocz(aligned_input_size);if (aligned_input==NULL) {av_log(NULL, AV_LOG_ERROR, "av_mallocz failed\n");return -1;}FILE *in_file = fopen(input_file, "rb");   //Input raw YUV dataif (in_file == NULL) {fprintf(stderr, "Failed to open input file\n");return -1;}bool isFileEnd = false;VideoEnc_FFMPEG writer;ret = writer.openEnc(output_file, soc_idx, enc_id, framerate , width, height, inputformat, bitrate);if (ret !=0 ) {av_log(NULL, AV_LOG_ERROR,"writer.openEnc failed\n");return -1;}//read raw datawhile(1) {for (int y = 0; y < height*3/2; y++) {ret = fread(aligned_input + y*stride, 1, width, in_file);if (ret < width) {if (ferror(in_file))av_log(NULL, AV_LOG_ERROR, "Failed to read raw data!\n");else if (feof(in_file))av_log(NULL, AV_LOG_INFO, "The end of file!\n");isFileEnd = true;break;}}if (isFileEnd)break;writer.writeFrame(aligned_input, stride, width, height);}writer.closeEnc();av_free(aligned_input);fclose(in_file);av_log(NULL, AV_LOG_INFO, "encode finish! \n");return 0;
}

创建了VideoEnc_FFMPEG

从上面代码可以发现,本实例创建了VideoEnc_FFMPEG类,然后在该结构体里进一步封装了openEnc方法和writeFrame方法,分别用于FFMPEG初始化和编码写文件操作。

VideoEnc_FFMPEG类定义如下:

class VideoEnc_FFMPEG
{
public:VideoEnc_FFMPEG();~VideoEnc_FFMPEG();int  openEnc(const char* filename, int soc_idx, int codecId, int framerate,int width, int height,int inputformat,int bitrate);void closeEnc();int  writeFrame(const uint8_t* data, int step, int width, int height);int  flush_encoder();private:AVFormatContext * ofmt_ctx;AVCodecContext  * enc_ctx;AVFrame         * picture;AVFrame         * input_picture;AVStream        * out_stream;uint8_t         * aligned_input;int               frame_width;int               frame_height;int               frame_idx;AVCodec* find_hw_video_encoder(int codecId){AVCodec *encoder = NULL;switch (codecId){case AV_CODEC_ID_H264:encoder = avcodec_find_encoder_by_name("h264_bm");break;case AV_CODEC_ID_H265:encoder = avcodec_find_encoder_by_name("h265_bm");break;default:break;}return encoder;}
};

可以发现,这里面还定义了find_hw_video_encoder方法用于查找编码器。该方法调用了FFMPEGavcodec_find_encoder_by_name函数,具体见上代码。

FFMPEG初始化

OpenEnc函数实现流程参考上图流程实现,用于完成FFMPEG编码器的初始化等操作:

int VideoEnc_FFMPEG::openEnc(const char* filename, int soc_idx, int codecId, int framerate, int width, int height, int inputformat, int bitrate)
{int ret = 0;AVCodec *encoder;AVDictionary *dict = NULL;frame_idx = 0;frame_width = width;frame_height = height;avformat_alloc_output_context2(&ofmt_ctx, NULL, NULL, filename);if (!ofmt_ctx) {av_log(NULL, AV_LOG_ERROR, "Could not create output context\n");return AVERROR_UNKNOWN;
}encoder = find_hw_video_encoder(codecId);if (!encoder) {av_log(NULL, AV_LOG_FATAL, "hardware video encoder not found\n");return AVERROR_INVALIDDATA;}enc_ctx = avcodec_alloc_context3(encoder);if (!enc_ctx) {av_log(NULL, AV_LOG_FATAL, "Failed to allocate the encoder context\n");return AVERROR(ENOMEM);
}//参数初始化enc_ctx->codec_id = (AVCodecID)codecId;enc_ctx->width    = width;enc_ctx->height   = height;enc_ctx->pix_fmt   = (AVPixelFormat)inputformat;enc_ctx->bit_rate_tolerance = bitrate;enc_ctx->bit_rate = (int64_t)bitrate;enc_ctx->gop_size = 32;enc_ctx->time_base.num = 1;enc_ctx->time_base.den = framerate;enc_ctx->framerate.num = framerate;enc_ctx->framerate.den = 1;av_log(NULL, AV_LOG_DEBUG, "enc_ctx->bit_rate = %ld\n", enc_ctx->bit_rate);out_stream = avformat_new_stream(ofmt_ctx, encoder);out_stream->time_base = enc_ctx->time_base;out_stream->avg_frame_rate = enc_ctx->framerate;out_stream->r_frame_rate = out_stream->avg_frame_rate;av_dict_set_int(&dict, "sophon_idx", soc_idx, 0);av_dict_set_int(&dict, "gop_preset", 8, 0);/* Use system memory */av_dict_set_int(&dict, "is_dma_buffer", 0, 0);av_dict_set_int(&dict, "qp", 25, 0);   /* Third parameter can be used to pass settings to encoder */ret = avcodec_open2(enc_ctx, encoder, &dict);if (ret < 0) {av_log(NULL, AV_LOG_ERROR, "Cannot open video encoder ");return ret;}ret = avcodec_parameters_from_context(out_stream->codecpar, enc_ctx);if (ret < 0) {av_log(NULL, AV_LOG_ERROR, "Failed to copy encoder paras to output stream ");return ret;}if (!(ofmt_ctx->oformat->flags & AVFMT_NOFILE)) {ret = avio_open(&ofmt_ctx->pb, filename, AVIO_FLAG_WRITE);if (ret < 0) {av_log(NULL, AV_LOG_ERROR, "Could not open output file '%s'", filename);return ret;}}/* init muxer, write output file header */ret = avformat_write_header(ofmt_ctx, NULL);if (ret < 0) {av_log(NULL, AV_LOG_ERROR, "Error occurred when opening output file\n");return ret;}picture = av_frame_alloc();picture->format = enc_ctx->pix_fmt;picture->width = width;picture->height = height;return 0;
}

编码与写文件

writeFrame函数用于实现将读取的YUV数据进行编码后写入文件,参考如下:

int VideoEnc_FFMPEG::writeFrame(const uint8_t* data, int step, int width, int height)
{int ret = 0 ;int got_output = 0;if (step % STEP_ALIGNMENT != 0) {av_log(NULL, AV_LOG_ERROR, "input step must align with STEP_ALIGNMENT\n");return -1;}static unsigned int frame_nums = 0;frame_nums++;av_image_fill_arrays(picture->data, picture->linesize, (uint8_t *) data, enc_ctx->pix_fmt, width, height, 1);picture->linesize[0] = step;picture->pts = frame_idx;frame_idx++;av_log(NULL, AV_LOG_DEBUG, "Encoding frame\n");/* encode filtered frame */AVPacket enc_pkt;enc_pkt.data = NULL;enc_pkt.size = 0;av_init_packet(&enc_pkt);ret = avcodec_encode_video2(enc_ctx, &enc_pkt, picture, &got_output);if (ret < 0)return ret;if (got_output == 0) {av_log(NULL, AV_LOG_WARNING, "No output from encoder\n");return -1;}/* prepare packet for muxing */av_log(NULL, AV_LOG_DEBUG, "enc_pkt.pts=%ld, enc_pkt.dts=%ld\n",enc_pkt.pts, enc_pkt.dts);av_packet_rescale_ts(&enc_pkt, enc_ctx->time_base,out_stream->time_base);av_log(NULL, AV_LOG_DEBUG, "rescaled enc_pkt.pts=%ld, enc_pkt.dts=%ld\n",enc_pkt.pts,enc_pkt.dts);av_log(NULL, AV_LOG_DEBUG, "Muxing frame\n");/* mux encoded frame */ret = av_interleaved_write_frame(ofmt_ctx, &enc_pkt);return ret;
}

释放资源结束编码

FFMPEG编码完成后需要释放申请的各种资源结束编码:

void VideoEnc_FFMPEG::closeEnc()
{flush_encoder();av_write_trailer(ofmt_ctx);av_frame_free(&picture);if (input_picture)av_free(input_picture);avcodec_free_context(&enc_ctx);if (ofmt_ctx && !(ofmt_ctx->oformat->flags & AVFMT_NOFILE))avio_closep(&ofmt_ctx->pb);avformat_free_context(ofmt_ctx);
}   

从上述代码可以发现,结束编码前需要执行flush_encoder()函数,该函数用于向文件中写入最后一帧:

int  VideoEnc_FFMPEG::flush_encoder()
{int ret;int got_frame = 0;if (!(enc_ctx->codec->capabilities & AV_CODEC_CAP_DELAY))return 0;while (1) {av_log(NULL, AV_LOG_INFO, "Flushing video encoder\n");AVPacket enc_pkt;enc_pkt.data = NULL;enc_pkt.size = 0;av_init_packet(&enc_pkt);ret = avcodec_encode_video2(enc_ctx, &enc_pkt, NULL, &got_frame);if (ret < 0)return ret;if (!got_frame)break;/* prepare packet for muxing */av_log(NULL, AV_LOG_DEBUG, "enc_pkt.pts=%ld, enc_pkt.dts=%ld\n",enc_pkt.pts,enc_pkt.dts);av_packet_rescale_ts(&enc_pkt, enc_ctx->time_base,out_stream->time_base);av_log(NULL, AV_LOG_DEBUG, "rescaled enc_pkt.pts=%ld, enc_pkt.dts=%ld\n",enc_pkt.pts,enc_pkt.dts);/* mux encoded frame */av_log(NULL, AV_LOG_DEBUG, "Muxing frame\n");ret = av_interleaved_write_frame(ofmt_ctx, &enc_pkt);if (ret < 0)break;}return ret;
}
编码实验过程

生成可执行文件

makefile的写法与前面的例程基本相同,如果是在云平台上测试,则可将编译好的执行文件通过云空间文件系统上传。

root@d11ae417e206:/tmp/test# ls

ffmpeg_encode  1080p.yuv

给可执行文件赋权限并执行。

root@d11ae417e206:/tmp/test# chmod 777 ffmpeg_encode

运行指令

生成并上传编译文件后,根据如下指令在目标开发机终端运行,其中具体的指令参数设置将在下面详细介绍。

root@d11ae417e206:/tmp/test# ./ffmpeg_encode  1080.yuv  output.h264

运行结果如下

[88a79010] src/enc.c:262 (vpu_EncInit)   SOC index 0, VPU core index 4

[7f88a79010] src/vdi.c:137 (bm_vdi_init)   [VDI] Open device /dev/vpu, fd=5

[7f88a79010] src/vdi.c:229 (bm_vdi_init)   [VDI] success to init driver

[88a79010] src/common.c:108 (find_firmware_path)   vpu firmware path: /system/lib/vpu_firmware/chagall.bin

[7f88a79010] src/vdi.c:137 (bm_vdi_init)   [VDI] Open device /dev/vpu, fd=5

[7f88a79010] src/vdi.c:229 (bm_vdi_init)   [VDI] success to init driver

[88a79010] src/enc.c:1326 (vpu_InitWithBitcode)   reload firmware...

[88a79010] src/enc.c:2461 (Wave5VpuInit)  

VPU INIT Start!!!

[88a79010] src/enc.c:306 (vpu_EncInit)   VPU Firmware is successfully loaded!

[88a79010] src/enc.c:310 (vpu_EncInit)   VPU FW VERSION=0x0,

REVISION=250327

[h265_bm @ 0x42aa90] width        : 1920

[h265_bm @ 0x42aa90] height       : 1080

[h265_bm @ 0x42aa90] pix_fmt      : yuv420p

[h265_bm @ 0x42aa90] sophon device: 0

The end of file!

Flushing video encoder

Flushing video encoder

Flushing video encoder

Flushing video encoder

Flushing video encoder

Flushing video encoder

Flushing video encoder

Flushing video encoder

这里需要注意的是,可以通过av_log_set_level设置LOG的打印级别,以观察更多的调试信息:

av_log_set_level(AV_LOG_DEBUG);                   //set debug level

 使用ffprobe程序分析码流 

媒体信息解析器ffprobe程序是FFmpeg提供的媒体信息检测工具。使用ffprobe不仅可以检测音视频文件的整体封装格式,还可以分析其中每一路音频流或者视频流信息,甚至可以进一步分析音视频流的每一个码流包或图像帧的信息。ffprobe的基本使用方法非常简单,直接使用参数-i加上要分析的文件即可。

查看封装格式指令

ffprobe -show_format -i test.mp4

注:使用参数-i,输入要分析的文件。添加参数-show_format,即可显示音视频文件更详细的封装格式信息。

封装格式信息:

[FORMAT]

filename=C:\Users\cze\Downloads\test.mp4//输入文件名

nb_streams=1//输入包含多少路媒体流

nb_programs=0//输入文件包含的节目数

format_name=mov,mp4,m4a,3gp,3g2,mj2//封装模块名称

format_long_name=QuickTime / MOV//封装模块全称

start_time=0.000000//输入媒体文件的起始时间

duration=3.334000//输入媒体文件的总时长

size=483666//输入文件大小

bit_rate=1160566//总体码率

probe_score=100//格式检测分值

TAG:major_brand=isom

TAG:major_brand=isom

TAG:minor_version=512

TAG:compatible_brands=isomiso2mp41

TAG:encoder=Lavf58.20.100

[/FORMAT]

查看媒体流指令:

ffprobe -show_streams -i test.mp4

注:一个音视频文件通常包括两路及以上的媒体流(如一路音频流和一路视频流)。使用参数-i,输入要分析的文件。添加参数-show_streams,即可显示每一路媒体流的具体信息。

视频流信息:

 [STREAM]

index=0//媒体流序号

codec_name=hevc//编码器名称

codec_long_name=H.265 / HEVC (High Efficiency Video Coding)//编码器全称

profile=Main//编码档次

codec_type=video//编码器类型

codec_tag_string=hev1

codec_tag=0x31766568

width=1920//视频图像的宽

height=1080//视频图像的高

coded_width=1920

coded_height=1080

closed_captions=0

film_grain=0

has_b_frames=3//每个I帧和P帧之间的B帧数量

sample_aspect_ratio=N/A//像素采样横纵比

display_aspect_ratio=N/A//画面显示横纵比

pix_fmt=yuv420p//像素格式

level=150//编码级别

color_range=tv

color_space=unknown

color_transfer=unknown

color_primaries=unknown

chroma_location=left

field_order=unknown

refs=1

id=0x1

r_frame_rate=30/1//最小帧率

avg_frame_rate=303/10//平均帧率

time_base=1/15360//当前流的时间基

start_pts=0//起始位置的pts

start_time=0.000000//起始位置的实际时间

duration_ts=51200//以时间基为单位的总时长

duration=3.333333//当前流的实际时长

bit_rate=1156005//当前流的码率

max_bit_rate=N/A//当前流的最大码率

bits_per_raw_sample=N/A//当前流每个采样的位深

nb_frames=101//当前流包含的总帧数

nb_read_frames=N/A

nb_read_packets=N/A

extradata_size=99

DISPOSITION:default=1

DISPOSITION:dub=0

DISPOSITION:original=0

DISPOSITION:comment=0

DISPOSITION:lyrics=0

DISPOSITION:karaoke=0

DISPOSITION:forced=0

DISPOSITION:hearing_impaired=0

DISPOSITION:visual_impaired=0

DISPOSITION:clean_effects=0

DISPOSITION:attached_pic=0

DISPOSITION:timed_thumbnails=0

DISPOSITION:captions=0

DISPOSITION:descriptions=0

DISPOSITION:metadata=0

DISPOSITION:dependent=0

DISPOSITION:still_image=0

TAG:language=und

TAG:handler_name=VideoHandler

TAG:vendor_id=[0][0][0][0]

[/STREAM] 

注:在该实例中,此文件只包含一路视频流信息。

使用VLC播放

压缩后的文件无法直接播放,可以通过VLC进行播放,VLC在Ubuntu下可以直接通过下面方法进行安装:

sudo apt-get install vlc

当然,也可以通过在电脑上安装ffplay进行播放。

使用Elecard StreamEye软件分析码流

现有的码流分析软件众多,Elecard StreamEye Tools是一款分析视音频码流的工具,读者可自行去Elecard官网下载安装包。网址为:https://www.elecard.com/

下面以Elecard StreamEye Tools 中的Elecard StreamEye为例,对编码后的视频文件进行分析。

首先打开Elecard StreamEye软件,点击File,点击Open。即可打开选择的视频文件,播放视频文件。

Elecard StreamEye主界面为视频编码每一帧的信息,其中红色代表编码帧为I帧,绿色代表编码帧为P帧。

点击View,点击Info,即可查看视频流信息,选择Headers可以显示该视频流的SPS和PPS信息。

这篇关于福州大学《嵌入式系统综合设计》 实验八:FFMPEG视频编码的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/432786

相关文章

流媒体平台/视频监控/安防视频汇聚EasyCVR播放暂停后视频画面黑屏是什么原因?

视频智能分析/视频监控/安防监控综合管理系统EasyCVR视频汇聚融合平台,是TSINGSEE青犀视频垂直深耕音视频流媒体技术、AI智能技术领域的杰出成果。该平台以其强大的视频处理、汇聚与融合能力,在构建全栈视频监控系统中展现出了独特的优势。视频监控管理系统EasyCVR平台内置了强大的视频解码、转码、压缩等技术,能够处理多种视频流格式,并以多种格式(RTMP、RTSP、HTTP-FLV、WebS

不懂推荐算法也能设计推荐系统

本文以商业化应用推荐为例,告诉我们不懂推荐算法的产品,也能从产品侧出发, 设计出一款不错的推荐系统。 相信很多新手产品,看到算法二字,多是懵圈的。 什么排序算法、最短路径等都是相对传统的算法(注:传统是指科班出身的产品都会接触过)。但对于推荐算法,多数产品对着网上搜到的资源,都会无从下手。特别当某些推荐算法 和 “AI”扯上关系后,更是加大了理解的难度。 但,不了解推荐算法,就无法做推荐系

基于人工智能的图像分类系统

目录 引言项目背景环境准备 硬件要求软件安装与配置系统设计 系统架构关键技术代码示例 数据预处理模型训练模型预测应用场景结论 1. 引言 图像分类是计算机视觉中的一个重要任务,目标是自动识别图像中的对象类别。通过卷积神经网络(CNN)等深度学习技术,我们可以构建高效的图像分类系统,广泛应用于自动驾驶、医疗影像诊断、监控分析等领域。本文将介绍如何构建一个基于人工智能的图像分类系统,包括环境

水位雨量在线监测系统概述及应用介绍

在当今社会,随着科技的飞速发展,各种智能监测系统已成为保障公共安全、促进资源管理和环境保护的重要工具。其中,水位雨量在线监测系统作为自然灾害预警、水资源管理及水利工程运行的关键技术,其重要性不言而喻。 一、水位雨量在线监测系统的基本原理 水位雨量在线监测系统主要由数据采集单元、数据传输网络、数据处理中心及用户终端四大部分构成,形成了一个完整的闭环系统。 数据采集单元:这是系统的“眼睛”,

综合安防管理平台LntonAIServer视频监控汇聚抖动检测算法优势

LntonAIServer视频质量诊断功能中的抖动检测是一个专门针对视频稳定性进行分析的功能。抖动通常是指视频帧之间的不必要运动,这种运动可能是由于摄像机的移动、传输中的错误或编解码问题导致的。抖动检测对于确保视频内容的平滑性和观看体验至关重要。 优势 1. 提高图像质量 - 清晰度提升:减少抖动,提高图像的清晰度和细节表现力,使得监控画面更加真实可信。 - 细节增强:在低光条件下,抖

嵌入式QT开发:构建高效智能的嵌入式系统

摘要: 本文深入探讨了嵌入式 QT 相关的各个方面。从 QT 框架的基础架构和核心概念出发,详细阐述了其在嵌入式环境中的优势与特点。文中分析了嵌入式 QT 的开发环境搭建过程,包括交叉编译工具链的配置等关键步骤。进一步探讨了嵌入式 QT 的界面设计与开发,涵盖了从基本控件的使用到复杂界面布局的构建。同时也深入研究了信号与槽机制在嵌入式系统中的应用,以及嵌入式 QT 与硬件设备的交互,包括输入输出设

JAVA智听未来一站式有声阅读平台听书系统小程序源码

智听未来,一站式有声阅读平台听书系统 🌟&nbsp;开篇:遇见未来,从“智听”开始 在这个快节奏的时代,你是否渴望在忙碌的间隙,找到一片属于自己的宁静角落?是否梦想着能随时随地,沉浸在知识的海洋,或是故事的奇幻世界里?今天,就让我带你一起探索“智听未来”——这一站式有声阅读平台听书系统,它正悄悄改变着我们的阅读方式,让未来触手可及! 📚&nbsp;第一站:海量资源,应有尽有 走进“智听

【区块链 + 人才服务】可信教育区块链治理系统 | FISCO BCOS应用案例

伴随着区块链技术的不断完善,其在教育信息化中的应用也在持续发展。利用区块链数据共识、不可篡改的特性, 将与教育相关的数据要素在区块链上进行存证确权,在确保数据可信的前提下,促进教育的公平、透明、开放,为教育教学质量提升赋能,实现教育数据的安全共享、高等教育体系的智慧治理。 可信教育区块链治理系统的顶层治理架构由教育部、高校、企业、学生等多方角色共同参与建设、维护,支撑教育资源共享、教学质量评估、

软考系统规划与管理师考试证书含金量高吗?

2024年软考系统规划与管理师考试报名时间节点: 报名时间:2024年上半年软考将于3月中旬陆续开始报名 考试时间:上半年5月25日到28日,下半年11月9日到12日 分数线:所有科目成绩均须达到45分以上(包括45分)方可通过考试 成绩查询:可在“中国计算机技术职业资格网”上查询软考成绩 出成绩时间:预计在11月左右 证书领取时间:一般在考试成绩公布后3~4个月,各地领取时间有所不同

系统架构师考试学习笔记第三篇——架构设计高级知识(20)通信系统架构设计理论与实践

本章知识考点:         第20课时主要学习通信系统架构设计的理论和工作中的实践。根据新版考试大纲,本课时知识点会涉及案例分析题(25分),而在历年考试中,案例题对该部分内容的考查并不多,虽在综合知识选择题目中经常考查,但分值也不高。本课时内容侧重于对知识点的记忆和理解,按照以往的出题规律,通信系统架构设计基础知识点多来源于教材内的基础网络设备、网络架构和教材外最新时事热点技术。本课时知识