07-图4 哈利·波特的考试 (25分)(C语言实现)

2023-11-28 18:58

本文主要是介绍07-图4 哈利·波特的考试 (25分)(C语言实现),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

07-图4 哈利·波特的考试 (25分)(C语言实现)

数据结构(浙江大学)

哈利·波特要考试了,他需要你的帮助。这门课学的是用魔咒将一种动物变成另一种动物的本事。例如将猫变成老鼠的魔咒是haha,将老鼠变成鱼的魔咒是hehe等等。反方向变化的魔咒就是简单地将原来的魔咒倒过来念,例如ahah可以将老鼠变成猫。另外,如果想把猫变成鱼,可以通过念一个直接魔咒lalala,也可以将猫变老鼠、老鼠变鱼的魔咒连起来念:hahahehe。

现在哈利·波特的手里有一本教材,里面列出了所有的变形魔咒和能变的动物。老师允许他自己带一只动物去考场,要考察他把这只动物变成任意一只指定动物的本事。于是他来问你:带什么动物去可以让最难变的那种动物(即该动物变为哈利·波特自己带去的动物所需要的魔咒最长)需要的魔咒最短?例如:如果只有猫、鼠、鱼,则显然哈利·波特应该带鼠去,因为鼠变成另外两种动物都只需要念4个字符;而如果带猫去,则至少需要念6个字符才能把猫变成鱼;同理,带鱼去也不是最好的选择。

输入格式:
输入说明:输入第1行给出两个正整数N (≤100)和M,其中N是考试涉及的动物总数,M是用于直接变形的魔咒条数。为简单起见,我们将动物按1~N编号。随后M行,每行给出了3个正整数,分别是两种动物的编号、以及它们之间变形需要的魔咒的长度(≤100),数字之间用空格分隔。

输出格式:
输出哈利·波特应该带去考场的动物的编号、以及最长的变形魔咒的长度,中间以空格分隔。如果只带1只动物是不可能完成所有变形要求的,则输出0。如果有若干只动物都可以备选,则输出编号最小的那只。

输入样例:
6 11
3 4 70
1 2 1
5 4 50
2 6 50
5 6 60
1 3 70
4 6 60
3 6 80
5 1 100
2 4 60
5 2 80
输出样例:
4 70

我们先分析此道题目,本题主要是求解哈利波特带哪只动物去参加考试,文章要求输出最长的变形魔咒的那只动物编号和魔咒长度。
首先:

程序框架搭建

int main()
{MGraph G=BuildGraph();//读入图FindAnimal(G);//分析图return 0;
}

先进行一些前面的定义

#include<stdio.h>
#include<stdlib.h>
#define MAX 100   //定义邻接图的大小
#define INFINITY 65535  //为了初始化邻接图的权重
typedef int Vertex;
typedef int WeightType;
/*定义图的结构体*/
typedef struct GNode *PtrToGNode;
struct GNode
{int Nv;int Ne;WeightType G[MAX][MAX];
};
typedef PtrToGNode MGraph;
/*定义边的结构体*/
typedef struct ENode *Edge;struct ENode {Vertex V1;  Vertex V2;WeightType Weight;};

总的函数声明如下:

MGraph Create(int VertexNum);//初始化图 
void InsertEdge(MGraph Graph,Edge E); //插入边
MGraph BuildGraph(); //建造图
void Find(MGraph G);
void Floyd( MGraph Graph, WeightType D[][MAX]);//佛洛依德算法
Vertex FindMax(WeightType D[][MAX],int i,int n);//找出最大的那个值

在这在这里我们需要先创造一个没有插入权重的空图,然后再进行输入,进行插入边。关于初始化图的函数:

MGraph Create(int Vertexnum)//初始化图,在这里要传入顶点的个数{MGraph G;G=(MGraph)malloc(sizeof(struct GNode));G->Nv=Vertexnum;G->Ne=0;for(int i=0;i<Vertexnum;i++){for(int j=0;j<Vertexnum;j++)G->G[i][j]=INFINITY;//初始化权重为很大的值}return G;}

关于插入边的函数InsertEdge():

void InsertEdge(MGraph G,Edge E){G->G[E->V1][E->V2]=E->Weight;   //在相应的邻接图存入相应的权重G->G[E->V2][E->V1]=E->Weight;}

接着就是BuildGraph()函数的定义:

MGraph BuildGraph(){Edge E;MGraph G;int Nv;scanf("%d",&Nv);G=Create(Nv);scanf("%d",&(G->Ne));if(G->Ne!=0){E=(Edge)malloc(sizeof(struct ENode));for(int i=0;i<G->Ne;i++){scanf("%d%d%d",&(E->V1),&(E->V2),&(E->Weight));E->V2--;E->V1--; InsertEdge(G,E); //插入边}}return G;}

在这里说明为什么要- -,因为数组下标是从0到n-1的,所以当你传入2-3的权重时,实际上是存到数组[1][2]当中去的.

好了,关于图的定义我们已经弄好了,接下来就是关于查找的问题了,在查找时候我们设计到一个很重要的算法:弗洛伊德算法.

void Floyd(MGraph Graph,WeightType D[][MAX]){Vertex i,j,k;for(i=0;i<Graph->Nv;i++)  //初始化,建立个和邻接图一样的二维数组{for(j=0;j<Graph->Nv;j++){D[i][j]=Graph->G[i][j];}}/*进行判断*/for(k=0;k<Graph->Nv;k++)for(i=0;i<Graph->Nv;i++)for(j=0;j<Graph->Nv;j++)if(D[i][j]>D[i][k]+D[k][j])D[i][j]=D[i][k]+D[k][j];}

在这个函数中,参数需要传来一个二维数组,我们需要对此二维数组进行改造.首先,我们需要复制一个和图节点的数组一模一样的数组,然后对此数组进行改造.那么这个三层循环是用来干什么的呢?
这就是弗洛伊德算法的作用:求最短路径,而且是有向图.在这里插入图片描述
假如给了你这样一张图,那我们进行分析:
在这里插入图片描述
在这里插入图片描述
由此可见,这三层循环会将D这个二维数组进行改变,除了对角点,其他节点都有了值.

接下来的代码就迎刃而解了

void find(MGraph G)
{WeightType D[MAX][MAX],Max = 0,Min = INFINITY;Vertex Animal,i;Floyd(G,D);//弗洛伊德算法for(i=0;i<G->Nv;i++)//进行循环{Max=FindMax(D,i,G->Nv);//找出i节点所对应的最大值if(Max==INFINITY)//如果最大值是INFINITY,说明只能带一只动物,显然是不行的.{printf("0\n");//直接输出返回return;}if(Max<Min)//已经是最大值了,不可能比INFINITY大的,所以对应着最大的权重{Min=Max;Animal=i+1;//因为数组是从下标为0开始存入的}}printf("%d %d\n",Animal,Min);//最后那个最大的那个动物
}

找出最大值的那个函数:

int FindMax(WeightType D[][MAX],int i,int n)
{int j,max = 0;for(j = 0; j < n; j++){if(i != j && D[i][j] > max)//如果缺少i!=j,那么max永远都是65535max = D[i][j];}return max;
}

总的代码如下:请认真思考再写代码!!!
希望大家都能有所收获!!!

#include<stdio.h>
#include<stdlib.h>
#define MAX 100
#define INFINITY 65535
typedef int Vertex;
typedef int WeightType;
typedef struct ENode *Edge;struct ENode {Vertex V1;Vertex V2;WeightType Weight;};typedef struct GNode *PtrtoGNode;struct GNode //定义一个图的结构体{int Nv;int Ne;WeightType G[MAX][MAX];};typedef PtrtoGNode MGraph;MGraph Create(int VertexNum);//初始化图 
void InsertEdge(MGraph Graph,Edge E); //插入连接线 
MGraph BuildGraph();
void Find(MGraph G);
void Floyd( MGraph Graph, WeightType D[][MAX]);
Vertex FindMax(WeightType D[][MAX],int i,int n);int main(){MGraph G = BuildGraph();find(G); }MGraph Create(int Vertexnum){MGraph G;G=(MGraph)malloc(sizeof(struct GNode));G->Nv=Vertexnum;G->Ne=0;for(int i=0;i<Vertexnum;i++){for(int j=0;j<Vertexnum;j++)G->G[i][j]=INFINITY;}return G;}void InsertEdge(MGraph G,Edge E){G->G[E->V1][E->V2]=E->Weight;   //在相应的邻接图存入相应的权重G->G[E->V2][E->V1]=E->Weight;}MGraph BuildGraph(){Edge E;MGraph G;int Nv;scanf("%d",&Nv);G=Create(Nv);scanf("%d",&(G->Ne));if(G->Ne!=0){E=(Edge)malloc(sizeof(struct ENode));for(int i=0;i<G->Ne;i++){scanf("%d%d%d",&(E->V1),&(E->V2),&(E->Weight));E->V2--;E->V1--; //因为输入边是从1开始的,而插入是从0开始的;InsertEdge(G,E); //插入边}}return G;}
void Floyd(MGraph Graph,WeightType D[][MAX]){Vertex i,j,k;for(i=0;i<Graph->Nv;i++)  //初始化,建立个和邻接图一样的二维数组{for(j=0;j<Graph->Nv;j++){D[i][j]=Graph->G[i][j];}}/*进行判断*/for(k=0;k<Graph->Nv;k++)for(i=0;i<Graph->Nv;i++)for(j=0;j<Graph->Nv;j++)if(D[i][j]>D[i][k]+D[k][j])D[i][j]=D[i][k]+D[k][j];}
void find(MGraph G)
{WeightType D[MAX][MAX],Max = 0,Min = INFINITY;Vertex Animal,i;Floyd(G,D);for(i=0;i<G->Nv;i++){Max=FindMax(D,i,G->Nv);if(Max==INFINITY){printf("0\n");return;}if(Max<Min){Min=Max;Animal=i+1;}}printf("%d %d\n",Animal,Min);
}
int FindMax(WeightType D[][MAX],int i,int n)
{int j,max = 0;for(j = 0; j < n; j++){if(i != j && D[i][j] > max)max = D[i][j];}return max;
}

这篇关于07-图4 哈利·波特的考试 (25分)(C语言实现)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/430119

相关文章

Oracle查询优化之高效实现仅查询前10条记录的方法与实践

《Oracle查询优化之高效实现仅查询前10条记录的方法与实践》:本文主要介绍Oracle查询优化之高效实现仅查询前10条记录的相关资料,包括使用ROWNUM、ROW_NUMBER()函数、FET... 目录1. 使用 ROWNUM 查询2. 使用 ROW_NUMBER() 函数3. 使用 FETCH FI

Python脚本实现自动删除C盘临时文件夹

《Python脚本实现自动删除C盘临时文件夹》在日常使用电脑的过程中,临时文件夹往往会积累大量的无用数据,占用宝贵的磁盘空间,下面我们就来看看Python如何通过脚本实现自动删除C盘临时文件夹吧... 目录一、准备工作二、python脚本编写三、脚本解析四、运行脚本五、案例演示六、注意事项七、总结在日常使用

Java实现Excel与HTML互转

《Java实现Excel与HTML互转》Excel是一种电子表格格式,而HTM则是一种用于创建网页的标记语言,虽然两者在用途上存在差异,但有时我们需要将数据从一种格式转换为另一种格式,下面我们就来看看... Excel是一种电子表格格式,广泛用于数据处理和分析,而HTM则是一种用于创建网页的标记语言。虽然两

Java中Springboot集成Kafka实现消息发送和接收功能

《Java中Springboot集成Kafka实现消息发送和接收功能》Kafka是一个高吞吐量的分布式发布-订阅消息系统,主要用于处理大规模数据流,它由生产者、消费者、主题、分区和代理等组件构成,Ka... 目录一、Kafka 简介二、Kafka 功能三、POM依赖四、配置文件五、生产者六、消费者一、Kaf

使用Python实现在Word中添加或删除超链接

《使用Python实现在Word中添加或删除超链接》在Word文档中,超链接是一种将文本或图像连接到其他文档、网页或同一文档中不同部分的功能,本文将为大家介绍一下Python如何实现在Word中添加或... 在Word文档中,超链接是一种将文本或图像连接到其他文档、网页或同一文档中不同部分的功能。通过添加超

windos server2022里的DFS配置的实现

《windosserver2022里的DFS配置的实现》DFS是WindowsServer操作系统提供的一种功能,用于在多台服务器上集中管理共享文件夹和文件的分布式存储解决方案,本文就来介绍一下wi... 目录什么是DFS?优势:应用场景:DFS配置步骤什么是DFS?DFS指的是分布式文件系统(Distr

NFS实现多服务器文件的共享的方法步骤

《NFS实现多服务器文件的共享的方法步骤》NFS允许网络中的计算机之间共享资源,客户端可以透明地读写远端NFS服务器上的文件,本文就来介绍一下NFS实现多服务器文件的共享的方法步骤,感兴趣的可以了解一... 目录一、简介二、部署1、准备1、服务端和客户端:安装nfs-utils2、服务端:创建共享目录3、服

C#使用yield关键字实现提升迭代性能与效率

《C#使用yield关键字实现提升迭代性能与效率》yield关键字在C#中简化了数据迭代的方式,实现了按需生成数据,自动维护迭代状态,本文主要来聊聊如何使用yield关键字实现提升迭代性能与效率,感兴... 目录前言传统迭代和yield迭代方式对比yield延迟加载按需获取数据yield break显式示迭

Python实现高效地读写大型文件

《Python实现高效地读写大型文件》Python如何读写的是大型文件,有没有什么方法来提高效率呢,这篇文章就来和大家聊聊如何在Python中高效地读写大型文件,需要的可以了解下... 目录一、逐行读取大型文件二、分块读取大型文件三、使用 mmap 模块进行内存映射文件操作(适用于大文件)四、使用 pand

使用SQL语言查询多个Excel表格的操作方法

《使用SQL语言查询多个Excel表格的操作方法》本文介绍了如何使用SQL语言查询多个Excel表格,通过将所有Excel表格放入一个.xlsx文件中,并使用pandas和pandasql库进行读取和... 目录如何用SQL语言查询多个Excel表格如何使用sql查询excel内容1. 简介2. 实现思路3