07-图4 哈利·波特的考试 (25分)(C语言实现)

2023-11-28 18:58

本文主要是介绍07-图4 哈利·波特的考试 (25分)(C语言实现),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

07-图4 哈利·波特的考试 (25分)(C语言实现)

数据结构(浙江大学)

哈利·波特要考试了,他需要你的帮助。这门课学的是用魔咒将一种动物变成另一种动物的本事。例如将猫变成老鼠的魔咒是haha,将老鼠变成鱼的魔咒是hehe等等。反方向变化的魔咒就是简单地将原来的魔咒倒过来念,例如ahah可以将老鼠变成猫。另外,如果想把猫变成鱼,可以通过念一个直接魔咒lalala,也可以将猫变老鼠、老鼠变鱼的魔咒连起来念:hahahehe。

现在哈利·波特的手里有一本教材,里面列出了所有的变形魔咒和能变的动物。老师允许他自己带一只动物去考场,要考察他把这只动物变成任意一只指定动物的本事。于是他来问你:带什么动物去可以让最难变的那种动物(即该动物变为哈利·波特自己带去的动物所需要的魔咒最长)需要的魔咒最短?例如:如果只有猫、鼠、鱼,则显然哈利·波特应该带鼠去,因为鼠变成另外两种动物都只需要念4个字符;而如果带猫去,则至少需要念6个字符才能把猫变成鱼;同理,带鱼去也不是最好的选择。

输入格式:
输入说明:输入第1行给出两个正整数N (≤100)和M,其中N是考试涉及的动物总数,M是用于直接变形的魔咒条数。为简单起见,我们将动物按1~N编号。随后M行,每行给出了3个正整数,分别是两种动物的编号、以及它们之间变形需要的魔咒的长度(≤100),数字之间用空格分隔。

输出格式:
输出哈利·波特应该带去考场的动物的编号、以及最长的变形魔咒的长度,中间以空格分隔。如果只带1只动物是不可能完成所有变形要求的,则输出0。如果有若干只动物都可以备选,则输出编号最小的那只。

输入样例:
6 11
3 4 70
1 2 1
5 4 50
2 6 50
5 6 60
1 3 70
4 6 60
3 6 80
5 1 100
2 4 60
5 2 80
输出样例:
4 70

我们先分析此道题目,本题主要是求解哈利波特带哪只动物去参加考试,文章要求输出最长的变形魔咒的那只动物编号和魔咒长度。
首先:

程序框架搭建

int main()
{MGraph G=BuildGraph();//读入图FindAnimal(G);//分析图return 0;
}

先进行一些前面的定义

#include<stdio.h>
#include<stdlib.h>
#define MAX 100   //定义邻接图的大小
#define INFINITY 65535  //为了初始化邻接图的权重
typedef int Vertex;
typedef int WeightType;
/*定义图的结构体*/
typedef struct GNode *PtrToGNode;
struct GNode
{int Nv;int Ne;WeightType G[MAX][MAX];
};
typedef PtrToGNode MGraph;
/*定义边的结构体*/
typedef struct ENode *Edge;struct ENode {Vertex V1;  Vertex V2;WeightType Weight;};

总的函数声明如下:

MGraph Create(int VertexNum);//初始化图 
void InsertEdge(MGraph Graph,Edge E); //插入边
MGraph BuildGraph(); //建造图
void Find(MGraph G);
void Floyd( MGraph Graph, WeightType D[][MAX]);//佛洛依德算法
Vertex FindMax(WeightType D[][MAX],int i,int n);//找出最大的那个值

在这在这里我们需要先创造一个没有插入权重的空图,然后再进行输入,进行插入边。关于初始化图的函数:

MGraph Create(int Vertexnum)//初始化图,在这里要传入顶点的个数{MGraph G;G=(MGraph)malloc(sizeof(struct GNode));G->Nv=Vertexnum;G->Ne=0;for(int i=0;i<Vertexnum;i++){for(int j=0;j<Vertexnum;j++)G->G[i][j]=INFINITY;//初始化权重为很大的值}return G;}

关于插入边的函数InsertEdge():

void InsertEdge(MGraph G,Edge E){G->G[E->V1][E->V2]=E->Weight;   //在相应的邻接图存入相应的权重G->G[E->V2][E->V1]=E->Weight;}

接着就是BuildGraph()函数的定义:

MGraph BuildGraph(){Edge E;MGraph G;int Nv;scanf("%d",&Nv);G=Create(Nv);scanf("%d",&(G->Ne));if(G->Ne!=0){E=(Edge)malloc(sizeof(struct ENode));for(int i=0;i<G->Ne;i++){scanf("%d%d%d",&(E->V1),&(E->V2),&(E->Weight));E->V2--;E->V1--; InsertEdge(G,E); //插入边}}return G;}

在这里说明为什么要- -,因为数组下标是从0到n-1的,所以当你传入2-3的权重时,实际上是存到数组[1][2]当中去的.

好了,关于图的定义我们已经弄好了,接下来就是关于查找的问题了,在查找时候我们设计到一个很重要的算法:弗洛伊德算法.

void Floyd(MGraph Graph,WeightType D[][MAX]){Vertex i,j,k;for(i=0;i<Graph->Nv;i++)  //初始化,建立个和邻接图一样的二维数组{for(j=0;j<Graph->Nv;j++){D[i][j]=Graph->G[i][j];}}/*进行判断*/for(k=0;k<Graph->Nv;k++)for(i=0;i<Graph->Nv;i++)for(j=0;j<Graph->Nv;j++)if(D[i][j]>D[i][k]+D[k][j])D[i][j]=D[i][k]+D[k][j];}

在这个函数中,参数需要传来一个二维数组,我们需要对此二维数组进行改造.首先,我们需要复制一个和图节点的数组一模一样的数组,然后对此数组进行改造.那么这个三层循环是用来干什么的呢?
这就是弗洛伊德算法的作用:求最短路径,而且是有向图.在这里插入图片描述
假如给了你这样一张图,那我们进行分析:
在这里插入图片描述
在这里插入图片描述
由此可见,这三层循环会将D这个二维数组进行改变,除了对角点,其他节点都有了值.

接下来的代码就迎刃而解了

void find(MGraph G)
{WeightType D[MAX][MAX],Max = 0,Min = INFINITY;Vertex Animal,i;Floyd(G,D);//弗洛伊德算法for(i=0;i<G->Nv;i++)//进行循环{Max=FindMax(D,i,G->Nv);//找出i节点所对应的最大值if(Max==INFINITY)//如果最大值是INFINITY,说明只能带一只动物,显然是不行的.{printf("0\n");//直接输出返回return;}if(Max<Min)//已经是最大值了,不可能比INFINITY大的,所以对应着最大的权重{Min=Max;Animal=i+1;//因为数组是从下标为0开始存入的}}printf("%d %d\n",Animal,Min);//最后那个最大的那个动物
}

找出最大值的那个函数:

int FindMax(WeightType D[][MAX],int i,int n)
{int j,max = 0;for(j = 0; j < n; j++){if(i != j && D[i][j] > max)//如果缺少i!=j,那么max永远都是65535max = D[i][j];}return max;
}

总的代码如下:请认真思考再写代码!!!
希望大家都能有所收获!!!

#include<stdio.h>
#include<stdlib.h>
#define MAX 100
#define INFINITY 65535
typedef int Vertex;
typedef int WeightType;
typedef struct ENode *Edge;struct ENode {Vertex V1;Vertex V2;WeightType Weight;};typedef struct GNode *PtrtoGNode;struct GNode //定义一个图的结构体{int Nv;int Ne;WeightType G[MAX][MAX];};typedef PtrtoGNode MGraph;MGraph Create(int VertexNum);//初始化图 
void InsertEdge(MGraph Graph,Edge E); //插入连接线 
MGraph BuildGraph();
void Find(MGraph G);
void Floyd( MGraph Graph, WeightType D[][MAX]);
Vertex FindMax(WeightType D[][MAX],int i,int n);int main(){MGraph G = BuildGraph();find(G); }MGraph Create(int Vertexnum){MGraph G;G=(MGraph)malloc(sizeof(struct GNode));G->Nv=Vertexnum;G->Ne=0;for(int i=0;i<Vertexnum;i++){for(int j=0;j<Vertexnum;j++)G->G[i][j]=INFINITY;}return G;}void InsertEdge(MGraph G,Edge E){G->G[E->V1][E->V2]=E->Weight;   //在相应的邻接图存入相应的权重G->G[E->V2][E->V1]=E->Weight;}MGraph BuildGraph(){Edge E;MGraph G;int Nv;scanf("%d",&Nv);G=Create(Nv);scanf("%d",&(G->Ne));if(G->Ne!=0){E=(Edge)malloc(sizeof(struct ENode));for(int i=0;i<G->Ne;i++){scanf("%d%d%d",&(E->V1),&(E->V2),&(E->Weight));E->V2--;E->V1--; //因为输入边是从1开始的,而插入是从0开始的;InsertEdge(G,E); //插入边}}return G;}
void Floyd(MGraph Graph,WeightType D[][MAX]){Vertex i,j,k;for(i=0;i<Graph->Nv;i++)  //初始化,建立个和邻接图一样的二维数组{for(j=0;j<Graph->Nv;j++){D[i][j]=Graph->G[i][j];}}/*进行判断*/for(k=0;k<Graph->Nv;k++)for(i=0;i<Graph->Nv;i++)for(j=0;j<Graph->Nv;j++)if(D[i][j]>D[i][k]+D[k][j])D[i][j]=D[i][k]+D[k][j];}
void find(MGraph G)
{WeightType D[MAX][MAX],Max = 0,Min = INFINITY;Vertex Animal,i;Floyd(G,D);for(i=0;i<G->Nv;i++){Max=FindMax(D,i,G->Nv);if(Max==INFINITY){printf("0\n");return;}if(Max<Min){Min=Max;Animal=i+1;}}printf("%d %d\n",Animal,Min);
}
int FindMax(WeightType D[][MAX],int i,int n)
{int j,max = 0;for(j = 0; j < n; j++){if(i != j && D[i][j] > max)max = D[i][j];}return max;
}

这篇关于07-图4 哈利·波特的考试 (25分)(C语言实现)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/430119

相关文章

Spring StateMachine实现状态机使用示例详解

《SpringStateMachine实现状态机使用示例详解》本文介绍SpringStateMachine实现状态机的步骤,包括依赖导入、枚举定义、状态转移规则配置、上下文管理及服务调用示例,重点解... 目录什么是状态机使用示例什么是状态机状态机是计算机科学中的​​核心建模工具​​,用于描述对象在其生命

Spring Boot 结合 WxJava 实现文章上传微信公众号草稿箱与群发

《SpringBoot结合WxJava实现文章上传微信公众号草稿箱与群发》本文将详细介绍如何使用SpringBoot框架结合WxJava开发工具包,实现文章上传到微信公众号草稿箱以及群发功能,... 目录一、项目环境准备1.1 开发环境1.2 微信公众号准备二、Spring Boot 项目搭建2.1 创建

IntelliJ IDEA2025创建SpringBoot项目的实现步骤

《IntelliJIDEA2025创建SpringBoot项目的实现步骤》本文主要介绍了IntelliJIDEA2025创建SpringBoot项目的实现步骤,文中通过示例代码介绍的非常详细,对大家... 目录一、创建 Spring Boot 项目1. 新建项目2. 基础配置3. 选择依赖4. 生成项目5.

深入理解Go语言中二维切片的使用

《深入理解Go语言中二维切片的使用》本文深入讲解了Go语言中二维切片的概念与应用,用于表示矩阵、表格等二维数据结构,文中通过示例代码介绍的非常详细,需要的朋友们下面随着小编来一起学习学习吧... 目录引言二维切片的基本概念定义创建二维切片二维切片的操作访问元素修改元素遍历二维切片二维切片的动态调整追加行动态

Linux下删除乱码文件和目录的实现方式

《Linux下删除乱码文件和目录的实现方式》:本文主要介绍Linux下删除乱码文件和目录的实现方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录linux下删除乱码文件和目录方法1方法2总结Linux下删除乱码文件和目录方法1使用ls -i命令找到文件或目录

SpringBoot+EasyExcel实现自定义复杂样式导入导出

《SpringBoot+EasyExcel实现自定义复杂样式导入导出》这篇文章主要为大家详细介绍了SpringBoot如何结果EasyExcel实现自定义复杂样式导入导出功能,文中的示例代码讲解详细,... 目录安装处理自定义导出复杂场景1、列不固定,动态列2、动态下拉3、自定义锁定行/列,添加密码4、合并

mybatis执行insert返回id实现详解

《mybatis执行insert返回id实现详解》MyBatis插入操作默认返回受影响行数,需通过useGeneratedKeys+keyProperty或selectKey获取主键ID,确保主键为自... 目录 两种方式获取自增 ID:1. ​​useGeneratedKeys+keyProperty(推

Spring Boot集成Druid实现数据源管理与监控的详细步骤

《SpringBoot集成Druid实现数据源管理与监控的详细步骤》本文介绍如何在SpringBoot项目中集成Druid数据库连接池,包括环境搭建、Maven依赖配置、SpringBoot配置文件... 目录1. 引言1.1 环境准备1.2 Druid介绍2. 配置Druid连接池3. 查看Druid监控

Linux在线解压jar包的实现方式

《Linux在线解压jar包的实现方式》:本文主要介绍Linux在线解压jar包的实现方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录linux在线解压jar包解压 jar包的步骤总结Linux在线解压jar包在 Centos 中解压 jar 包可以使用 u

c++ 类成员变量默认初始值的实现

《c++类成员变量默认初始值的实现》本文主要介绍了c++类成员变量默认初始值,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧... 目录C++类成员变量初始化c++类的变量的初始化在C++中,如果使用类成员变量时未给定其初始值,那么它将被