磁共振并行成像方法--从SMASH到GRAPPA(1)

2023-11-28 17:10

本文主要是介绍磁共振并行成像方法--从SMASH到GRAPPA(1),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

Part1:SMASH

基于K空间的磁共振并行成像是利用多通道的相控阵列线圈,采集部分k空间数据结合线圈的敏感度信息,对未采集的K空间数据进行估计,从而组合成全采样的K空间数据。在K空间域的并行重建的典型方法有SMASH、AUTO-SMASH、VD-ATUO-SAMSH 以及目前普遍使用的GRAPPA。
在二维平面中,磁共振信号可以表示为:
S ( k x , k y ) = ∬ C ( x , y ) ρ ( x , y ) e ( − i k x x − i k y y ) d x d y S(k_{x},k_{y})=\iint C(x,y)\rho(x,y)e^{(-ik_{x}x-ik_{y}y)}dxdy S(kx,ky)=C(x,y)ρ(x,y)e(ikxxikyy)dxdy (1)
其中 C ( x , y ) C(x,y) C(x,y)表示感应线圈的敏感度(receiver coil sensitivity), ρ ( x , y ) \rho(x,y) ρ(x,y)表示自旋密度(spin density)。 k x = γ G x t x k_x=\gamma G_xt_x kx=γGxtx k y = γ G y t y k_y=\gamma G_yt_y ky=γGyty γ \gamma γ表示磁旋比(gyromagnetic ratio), G x 和 G y G_x和G_y GxGy表示x和y方向的梯度大小。 t x 和 t y t_x和t_y txty表示对应的作用时间。
那么对于在多线圈的并行成像中,二维平面内的磁共振信号可以表示为:
S l ( k x , k y ) = ∬ C l ( x , y ) ρ ( x , y ) e ( − i k x x − i k y y ) d x d y , l = 1 , 2 , . . . , L S_l(k_{x},k_{y})=\iint C_l(x,y)\rho(x,y)e^{(-ik_{x}x-ik_{y}y)}dxdy ,\ l=1,2,...,L Sl(kx,ky)=Cl(x,y)ρ(x,y)e(ikxxikyy)dxdy, l=1,2,...,L (2)
S l ( k x , k y ) , C l ( x , y ) S_l(k_x,k_y),C_l(x,y) Sl(kx,ky),Cl(x,y)分别表示第 l l l个线圈的K空间数据和线圈敏感度, L L L表示线圈数量。
SMASH的基本概念:通过线圈的敏感度的线性组合可以直接产生缺失的相位编码。ALT幅度萨芬

图1.SMASH线圈敏感度合成

如何理解线圈敏感度的线性组合呢?如图1(a)所示,在一组相控阵列线圈中存在4个子线圈,排列方式如图所示。每个线圈都有相应的线圈敏感度 C l ( x , y ) C_l(x,y) Cl(x,y),其敏感度在相位编码方向的具有正弦分布的曲线。SMASH的思想,可以理解为通过一种线性组合,使得子线圈敏感度 C l ( x , y ) C_l(x,y) Cl(x,y)可以 线性拟合成一些列的复数型复合线圈敏感度 C m c o m p ( x , y ) C_{m}^{comp}(x,y) Cmcomp(x,y),这种复合线圈敏感度曲线也是具有复数型的空间谐波。那么可以用公式描述为:
C m c o m p ( x , y ) = ∑ l = 1 L n l ( m ) C l ( x , y ) C_{m}^{comp}(x,y)=\sum_{l=1}^{L}n_{l}^{(m)}C_l(x,y) Cmcomp(x,y)=l=1Lnl(m)Cl(x,y) (3)
其中,m表示,空间谐波的序数(阶数)。在K空间中, Δ k y \Delta k_y Δky表示相位编码方向的分辨率,对m和 Δ k y \Delta k_y Δky的理解可以参见图2所示, Δ k y = 2 π / F O V \Delta k_y =2\pi/FOV Δky=2π/FOV
在这里插入图片描述
图2.SMASH 采样方式,实线表示实际采样,虚线表示欠采样的k空间数据。

公式(3)展示了不同m序数,对应的复合线圈敏感度。SMASH中认为合成线圈敏感度可以表示为:
C c o m p = c o s Δ k y c o m p + i s i n Δ k y c o m p y = e ( i Δ k y c o m p y ) C^{comp}=cos\Delta k_{y}^{comp} + isin\Delta k_{y}^{comp}y = e^{(i \Delta k^{comp}_{y} y)} Ccomp=cosΔkycomp+isinΔkycompy=e(iΔkycompy (4)
对于不同m阶,由(3)和(4)将产生合成线圈敏感度:
C m c o m p ( x , y ) = ∑ l = 1 L n l ( m ) C l ( x , y ) = e ( i m Δ k y y ) C_{m}^{comp}(x,y)=\sum_{l=1}^{L}n_{l}^{(m)}C_l(x,y)=e^{(im\Delta k_yy)} Cmcomp(x,y)=l=1Lnl(m)Cl(x,y)=e(imΔkyy) (5)
当m=0时, C 0 c o m p ( x , y ) = ∑ l = 1 L n l 0 C l ( x , y ) = 1 C_{0}^{comp}(x,y)=\sum_{l=1}^{L}n_{l}^{0}C_l(x,y)=1 C0comp(x,y)=l=1Lnl0Cl(x,y)=1,如图1(a)中 0阶空间谐波,此时,理想合成的复数线圈敏感度,实数为1,虚数为0。图1(b)展示了8线圈的复合线圈敏感度,当m=0时, C 0 c o m p C_0^{comp} C0comp为常数。图1(b)中也展示了 C m = 1 c o m p C_{m=1}^{comp} Cm=1comp C m = 2 c o m p C_{m=2}^{comp} Cm=2comp的空间谐波合成情况。式(5)中,可以通过最小二乘法拟合求得每个m阶次下的权重系数 n l ( m ) n_l^{(m)} nl(m)
SMASH中认为在K空间复合信号也可以有与线圈敏感度相类似的线性合成:
S m c o m p ( k x , k y ) = ∑ l = 1 L n l ( m ) S l ( k x , k y ) S^{comp}_m(k_x,k_y)=\sum_{l=1}^Ln^{(m)}_lS_l(k_x,k_y) Smcomp(kx,ky)=l=1Lnl(m)Sl(kx,ky)(6)
S m c o m p ( k x , k y ) = ∑ l = 1 L n l ( m ) S l ( k x , k y ) = ∑ l = 1 L n l ( m ) ∬ C l ( x , y ) ρ ( x , y ) e ( − i k x x − i k y y ) d x d y = ∬ [ ∑ l = 1 L n l ( m ) C l ( x , y ) ] ρ ( x , y ) e ( − i k x x − i k y y ) d x d y = ∬ e i m Δ k y y ρ ( x , y ) e ( − i k x x − i k y y ) d x d y = ∬ ρ ( x , y ) e ( − i k x x − i ( k y − m Δ k y ) y ) d x d y = S ( k x , k y − m Δ k y ) S^{comp}_m(k_x,k_y)=\sum_{l=1}^Ln^{(m)}_lS_l(k_x,k_y)=\sum_{l=1}^Ln^{(m)}_l\iint C_l(x,y) \rho(x,y) e^{(-ik_{x}x-ik_{y}y)}dxdy =\iint \begin{bmatrix} \sum_{l=1}^Ln^{(m)}_lC_l(x,y) \end{bmatrix} \rho(x,y) e^{(-ik_{x}x-ik_{y}y)}dxdy \\ =\iint e^{im\Delta k_yy} \rho(x,y) e^{(-ik_{x}x-ik_{y}y)}dxdy \\ =\iint \rho(x,y) e^{(-ik_{x}x-i(k_{y}-m\Delta k_y)y)}dxdy \\ =S(k_x,k_y-m\Delta k_y) Smcomp(kx,ky)=l=1Lnl(m)Sl(kx,ky)=l=1Lnl(m)Cl(x,y)ρ(x,y)e(ikxxikyy)dxdy=[l=1Lnl(m)Cl(x,y)]ρ(x,y)e(ikxxikyy)dxdy=eimΔkyyρ(x,y)e(ikxxikyy)dxdy=ρ(x,y)e(ikxxi(kymΔky)y)dxdy=S(kx,kymΔky)(7)
S m c o m p ( k x , k y ) = ∬ C m c o m p ( x , y ) ρ ( x , y ) e ( − i k x x − i k y y ) d x d y = ∬ C 0 c o m p ( x , y ) e i m Δ k y y ρ ( x , y ) e ( − i k x x − i k y y ) d x d y = ∬ C 0 c o m p ( x , y ) ρ ( x , y ) e ( − i k x x − i ( k y − m Δ k y ) y ) d x d y = S 0 c o m p ( k x , k y − m Δ k y ) S^{comp}_m(k_x,k_y)=\iint C_m^{comp}(x,y) \rho(x,y) e^{(-ik_{x}x-ik_{y}y)}dxdy \\ =\iint C_0^{comp}(x,y) e^{im\Delta k_yy} \rho(x,y) e^{(-ik_{x}x-ik_{y}y)}dxdy \\ =\iint C_0^{comp}(x,y) \rho(x,y) e^{(-ik_{x}x-i(k_{y}-m\Delta k_y)y)}dxdy \\ =S_0^{comp}(k_x,k_y-m\Delta k_y) Smcomp(kx,ky)=Cmcomp(x,y)ρ(x,y)e(ikxxikyy)dxdy=C0comp(x,y)eimΔkyyρ(x,y)e(ikxxikyy)dxdy=C0comp(x,y)ρ(x,y)e(ikxxi(kymΔky)y)dxdy=S0comp(kx,kymΔky)(8)
公式(7)中的 S S S表示理想的相位编码位移函数,即用于填充K相位编码偏移 − m Δ k y -m\Delta k_y mΔky的空间数据。由公式(7),在求得权重系数 n l ( m ) n^{(m)}_l nl(m)的情况下,可以通过已采集的 S l ( k x , k y ) S_l(k_x,k_y) Sl(kx,ky)线性拟合得到。
SMASH的缺点:
SMASH方法依赖于阵列中每个线圈的线圈敏感度的精确估计,才能确定最优的权重系数。而然线圈敏感度的精确估计是非常困难的,甚至不可能得到。

这篇关于磁共振并行成像方法--从SMASH到GRAPPA(1)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/430023

相关文章

【C++】_list常用方法解析及模拟实现

相信自己的力量,只要对自己始终保持信心,尽自己最大努力去完成任何事,就算事情最终结果是失败了,努力了也不留遗憾。💓💓💓 目录   ✨说在前面 🍋知识点一:什么是list? •🌰1.list的定义 •🌰2.list的基本特性 •🌰3.常用接口介绍 🍋知识点二:list常用接口 •🌰1.默认成员函数 🔥构造函数(⭐) 🔥析构函数 •🌰2.list对象

浅谈主机加固,六种有效的主机加固方法

在数字化时代,数据的价值不言而喻,但随之而来的安全威胁也日益严峻。从勒索病毒到内部泄露,企业的数据安全面临着前所未有的挑战。为了应对这些挑战,一种全新的主机加固解决方案应运而生。 MCK主机加固解决方案,采用先进的安全容器中间件技术,构建起一套内核级的纵深立体防护体系。这一体系突破了传统安全防护的局限,即使在管理员权限被恶意利用的情况下,也能确保服务器的安全稳定运行。 普适主机加固措施:

webm怎么转换成mp4?这几种方法超多人在用!

webm怎么转换成mp4?WebM作为一种新兴的视频编码格式,近年来逐渐进入大众视野,其背后承载着诸多优势,但同时也伴随着不容忽视的局限性,首要挑战在于其兼容性边界,尽管WebM已广泛适应于众多网站与软件平台,但在特定应用环境或老旧设备上,其兼容难题依旧凸显,为用户体验带来不便,再者,WebM格式的非普适性也体现在编辑流程上,由于它并非行业内的通用标准,编辑过程中可能会遭遇格式不兼容的障碍,导致操

透彻!驯服大型语言模型(LLMs)的五种方法,及具体方法选择思路

引言 随着时间的发展,大型语言模型不再停留在演示阶段而是逐步面向生产系统的应用,随着人们期望的不断增加,目标也发生了巨大的变化。在短短的几个月的时间里,人们对大模型的认识已经从对其zero-shot能力感到惊讶,转变为考虑改进模型质量、提高模型可用性。 「大语言模型(LLMs)其实就是利用高容量的模型架构(例如Transformer)对海量的、多种多样的数据分布进行建模得到,它包含了大量的先验

【北交大信息所AI-Max2】使用方法

BJTU信息所集群AI_MAX2使用方法 使用的前提是预约到相应的算力卡,拥有登录权限的账号密码,一般为导师组共用一个。 有浏览器、ssh工具就可以。 1.新建集群Terminal 浏览器登陆10.126.62.75 (如果是1集群把75改成66) 交互式开发 执行器选Terminal 密码随便设一个(需记住) 工作空间:私有数据、全部文件 加速器选GeForce_RTX_2080_Ti

【VUE】跨域问题的概念,以及解决方法。

目录 1.跨域概念 2.解决方法 2.1 配置网络请求代理 2.2 使用@CrossOrigin 注解 2.3 通过配置文件实现跨域 2.4 添加 CorsWebFilter 来解决跨域问题 1.跨域概念 跨域问题是由于浏览器实施了同源策略,该策略要求请求的域名、协议和端口必须与提供资源的服务相同。如果不相同,则需要服务器显式地允许这种跨域请求。一般在springbo

AI(文生语音)-TTS 技术线路探索学习:从拼接式参数化方法到Tacotron端到端输出

AI(文生语音)-TTS 技术线路探索学习:从拼接式参数化方法到Tacotron端到端输出 在数字化时代,文本到语音(Text-to-Speech, TTS)技术已成为人机交互的关键桥梁,无论是为视障人士提供辅助阅读,还是为智能助手注入声音的灵魂,TTS 技术都扮演着至关重要的角色。从最初的拼接式方法到参数化技术,再到现今的深度学习解决方案,TTS 技术经历了一段长足的进步。这篇文章将带您穿越时

模版方法模式template method

学习笔记,原文链接 https://refactoringguru.cn/design-patterns/template-method 超类中定义了一个算法的框架, 允许子类在不修改结构的情况下重写算法的特定步骤。 上层接口有默认实现的方法和子类需要自己实现的方法

使用JS/Jquery获得父窗口的几个方法(笔记)

<pre name="code" class="javascript">取父窗口的元素方法:$(selector, window.parent.document);那么你取父窗口的父窗口的元素就可以用:$(selector, window.parent.parent.document);如题: $(selector, window.top.document);//获得顶级窗口里面的元素 $(

消除安卓SDK更新时的“https://dl-ssl.google.com refused”异常的方法

消除安卓SDK更新时的“https://dl-ssl.google.com refused”异常的方法   消除安卓SDK更新时的“https://dl-ssl.google.com refused”异常的方法 [转载]原地址:http://blog.csdn.net/x605940745/article/details/17911115 消除SDK更新时的“