CGAN原理讲解与源码

2023-11-28 05:04
文章标签 源码 讲解 原理 cgan

本文主要是介绍CGAN原理讲解与源码,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

1.CGAN原理

生成器,输入的是c和z,z是随机噪声,c是条件,对应MNIST数据集,要求规定生成数字是几。
输出是生成的虚假图片。
在这里插入图片描述

判别器的输入是
1.生成器输出的虚假图片x;
2.对应图片的标签c

在这里插入图片描述
来自真实数据集,且标签是对的,就是1
如果是生成器生成的虚假照片就直接是1,都不需要看是否与标签对应

上面第二张图的意思就是,当图片是来自真实数据集,再来看是否与标签对应

2.CGAN损失函数

在这里插入图片描述
上面这个值,生成器越小越好,即判别器认为真实图片是真实图片的概率越低越好,认为虚假图片是真实图片的概率越高越好
判别器越大越好,即判别器认为真实图片是真实图片的概率越大越好,认为虚假图片是真实图片的概率越小越好

criterion(output, label)

在判别器中,
1)output是预测来自真实数据集的图片和标签是否是真实且符合标签的概率,label是1
2)output是预测虚假图片是否是虚假图片的概率,label是0
在生成器中,
output是判别器预测虚假图片是否是真实图片的概率,label是1
以上三种,都是交叉熵越小越好

3.生成器和判别器的源码

class Generator(nn.Module):def __init__(self, num_channel=1, nz=100, nc=10, ngf=64):super(Generator, self).__init__()self.main = nn.Sequential(# 输入维度 110 x 1 x 1nn.ConvTranspose2d(nz + nc, ngf * 8, 4, 1, 0, bias=False),nn.BatchNorm2d(ngf * 8),nn.ReLU(True),# 特征维度 (ngf*8) x 4 x 4nn.ConvTranspose2d(ngf * 8, ngf * 4, 4, 2, 1, bias=False),nn.BatchNorm2d(ngf * 4),nn.ReLU(True),# 特征维度 (ngf*4) x 8 x 8nn.ConvTranspose2d(ngf * 4, ngf * 2, 4, 2, 1, bias=False),nn.BatchNorm2d(ngf * 2),nn.ReLU(True),# 特征维度 (ngf*2) x 16 x 16nn.ConvTranspose2d(ngf * 2, ngf, 4, 2, 1, bias=False),nn.BatchNorm2d(ngf),nn.ReLU(True),# 特征维度 (ngf) x 32 x 32nn.ConvTranspose2d(ngf, num_channel, 4, 2, 1, bias=False),nn.Tanh()# 特征维度. (num_channel) x 64 x 64)self.apply(weights_init)def forward(self, input_z, onehot_label):input_ = torch.cat((input_z, onehot_label), dim=1)n, c = input_.size()input_ = input_.view(n, c, 1, 1)return self.main(input_)class Discriminator(nn.Module):def __init__(self, num_channel=1, nc=10, ndf=64):super(Discriminator, self).__init__()self.main = nn.Sequential(# 输入维度 (num_c3# channel+nc) x 64 x 64  1*64*64的图像和10维的类别   10维类别先转换成10*64*64    然后合并就是11*64*64# 输入通道  输出通道   卷积核的大小   步长  填充#原始输入张量:b 11 64  64nn.Conv2d(num_channel + nc, ndf, 4, 2, 1, bias=False),   #b  64  32  32nn.LeakyReLU(0.2, inplace=True),# 特征维度 (ndf) x 32 x 32nn.Conv2d(ndf, ndf * 2, 4, 2, 1, bias=False),  #b   64*2   16  16nn.BatchNorm2d(ndf * 2),nn.LeakyReLU(0.2, inplace=True),# 特征维度 (ndf*2) x 16 x 16nn.Conv2d(ndf * 2, ndf * 4, 4, 2, 1, bias=False),    #b   64*4   8    8nn.BatchNorm2d(ndf * 4),nn.LeakyReLU(0.2, inplace=True),# 特征维度 (ndf*4) x 8 x 8nn.Conv2d(ndf * 4, ndf * 8, 4, 2, 1, bias=False),    #b   64*8    4    4nn.BatchNorm2d(ndf * 8),nn.LeakyReLU(0.2, inplace=True),# 特征维度 (ndf*8) x 4 x 4nn.Conv2d(ndf * 8, 1, 4, 1, 0, bias=False),        #b   1    1    1      其实就是一个数值,区间在正无穷到负无穷之间nn.Sigmoid())self.apply(weights_init)def forward(self, images, onehot_label):device = 'cuda' if torch.cuda.is_available() else 'cpu'h, w = images.shape[2:]n, nc = onehot_label.shape[:2]label = onehot_label.view(n, nc, 1, 1) * torch.ones([n, nc, h, w]).to(device)input_ = torch.cat([images, label], 1)return self.main(input_)

4.训练过程

MODEL_G_PATH = "./"
LOG_G_PATH = "Log_G.txt"
LOG_D_PATH = "Log_D.txt"
IMAGE_SIZE = 64
BATCH_SIZE = 128
WORKER = 1
LR = 0.0002
NZ = 100
NUM_CLASS = 10
EPOCH = 10data_loader = loadMNIST(img_size=IMAGE_SIZE, batch_size=BATCH_SIZE)  #原始图片宽高是28*28的,给改变成64*64
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
netG = Generator().to(device)
netD = Discriminator().to(device)
criterion = nn.BCELoss()
real_label = 1.
fake_label = 0.
optimizerD = optim.Adam(netD.parameters(), lr=LR, betas=(0.5, 0.999))
optimizerG = optim.Adam(netG.parameters(), lr=LR, betas=(0.5, 0.999))g_writer = LossWriter(save_path=LOG_G_PATH)
d_writer = LossWriter(save_path=LOG_D_PATH)fix_noise = torch.randn(BATCH_SIZE, NZ, device=device)
fix_input_c = (torch.rand(BATCH_SIZE, 1) * NUM_CLASS).type(torch.LongTensor).squeeze().to(device)
fix_input_c = onehot(fix_input_c, NUM_CLASS)img_list = []
G_losses = []
D_losses = []
iters = 0print("开始训练>>>")
for epoch in range(EPOCH):print("正在保存网络并评估...")save_network(MODEL_G_PATH, netG, epoch)with torch.no_grad():fake_imgs = netG(fix_noise, fix_input_c).detach().cpu()images = recover_image(fake_imgs)full_image = np.full((5 * 64, 5 * 64, 3), 0, dtype="uint8")for i in range(25):row = i // 5col = i % 5full_image[row * 64:(row + 1) * 64, col * 64:(col + 1) * 64, :] = images[i]plt.imshow(full_image)#plt.show()plt.imsave("{}.png".format(epoch), full_image)for data in data_loader:##################################################判别器交叉熵越小越好# 1. 更新判别器D: 最大化 log(D(x)) + log(1 - D(G(z)))# 等同于最小化 - log(D(x)) - log(1 - D(G(z)))#################################################netD.zero_grad()real_imgs, input_c = data   #这里的input_c其实就是数据集每一批中的每个图片对应的标签input_c = input_c.to(device)input_c = onehot(input_c, NUM_CLASS).to(device)# 1.1 来自数据集的样本#这里这一步就是想训练判别器,能够识别出是否真实图片,以及图片与对应的标签是否对应real_imgs = real_imgs.to(device)b_size = real_imgs.size(0)label = torch.full((b_size,), real_label, dtype=torch.float, device=device)#上面的torch.full是生成一维的 b_size这么多的,填充值为1.的张量# real_label = 1.# fake_label = 0.# 使用鉴别器对数据集样本做判断output = netD(real_imgs, input_c).view(-1)   #view() 方法被用来将模型输出的张量进行扁平化操作,即将张量中的所有元素都展开成一个一维向量# 计算交叉熵损失 -log(D(x))errD_real = criterion(output, label)# 对判别器进行梯度回传errD_real.backward()D_x = output.mean().item()    #对同一批预测结果的交叉熵取平均值## 1.2 生成随机向量   这一步想要训练判别器是否能够识别出是虚假图片noise = torch.randn(b_size, NZ, device=device)# 生成随机标签input_c = (torch.rand(b_size, 1) * NUM_CLASS).type(torch.LongTensor).squeeze().to(device)input_c = onehot(input_c, NUM_CLASS)#fix_noise = torch.randn(BATCH_SIZE, NZ, device=device)#fix_input_c = (torch.rand(BATCH_SIZE, 1) * NUM_CLASS).type(torch.LongTensor).squeeze().to(device)#fix_input_c = onehot(fix_input_c, NUM_CLASS)# 来自生成器生成的样本fake = netG(noise, input_c)label.fill_(fake_label)# real_label = 1.# fake_label = 0.# 使用鉴别器对生成器生成样本做判断output = netD(fake.detach(), input_c).view(-1)   #view() 方法被用来将模型输出的张量进行扁平化操作,即将张量中的所有元素都展开成一个一维向量# 计算交叉熵损失 -log(1 - D(G(z)))errD_fake = criterion(output, label)# 对判别器进行梯度回传errD_fake.backward()D_G_z1 = output.mean().item()# 对判别器计算总梯度,-log(D(x))-log(1 - D(G(z)))errD = errD_real + errD_fake# 更新判别器optimizerD.step()################################################## 2. 更新生成器G: 最小化 log(D(x)) + log(1 - D(G(z))),# 等同于最小化log(1 - D(G(z))),即最小化-log(D(G(z)))# 也就等同于最小化-(log(D(G(z)))*1+log(1-D(G(z)))*0)# 令生成器样本标签值为1,上式就满足了交叉熵的定义#################################################netG.zero_grad()# 对于生成器训练,令生成器生成的样本为真,label.fill_(real_label)# real_label = 1.# fake_label = 0.output = netD(fake, input_c).view(-1)# 对生成器计算损失errG = criterion(output, label)# 因为这里判别器的角度label真实应该是0,但是站在生成器的角度,label真实应该是1,即生成器希望生成的虚假图片让判别器识别的时候,会误以为1才比较好,即误以为是真实的图片# 所以生成器交叉熵也是越小越好# 对生成器进行梯度回传errG.backward()D_G_z2 = output.mean().item()# 更新生成器optimizerG.step()# 输出损失状态if iters % 5 == 0:print('[%d/%d][%d/%d]\tLoss_D: %.4f\tLoss_G: %.4f\tD(x): %.4f\tD(G(z)): %.4f / %.4f'% (epoch, EPOCH, iters % len(data_loader), len(data_loader),errD.item(), errG.item(), D_x, D_G_z1, D_G_z2))d_writer.add(loss=errD.item(), i=iters)g_writer.add(loss=errG.item(), i=iters)# 保存损失记录G_losses.append(errG.item())D_losses.append(errD.item())iters += 1

5.关于交叉熵

熵代表确定性,熵越小越好,说明确定性越好
在这里,因为参照的是真实标签,它的熵是0
而交叉熵-熵=相对熵
故相对熵在预测情况相对真实情况的时候,相对熵=交叉熵,相对熵越小,说明预测情况越接近真实情况;
同理,交叉熵越小,说明预测情况越接近真实情况。

在二分类0,1任务中,经过卷积、正则化、激活函数ReLU等操作之后,假如生成了一个(B,1,1,1)的张量,每个值在(无穷小,无穷大)之间,经过sigmoid函数,会变成一个(B,1,1,1)的张量,数值h在(0,1)之间,如果这个h>0.5说明模型预测的是1,如果h<0.5说明模型预测的是0,但是这是模型预测的标签值y*,而还有个真实标签值y。假如现在h=0.6,那么说明模型预测的标签y*是1,真实标签却是0,

交叉熵= -y(lgh) -(1-y)(lg(1-h))
即当y=1时,交叉熵是-lgh 这个情况下,h越大越好
当y=0时,交叉熵是-(lg(1-h)) 这个情况下,h越小越好

6.训练过程运行结果

在这里插入图片描述
在这里插入图片描述

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

在这里插入图片描述
在这里插入图片描述

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

在这里插入图片描述

7.测试结果

在这里插入图片描述

测试代码


NZ = 100
NUM_CLASS = 10
BATCH_SIZE = 10
DEVICE = "cpu"# fix_input_c = (torch.rand(BATCH_SIZE, 1) * NUM_CLASS).type(torch.LongTensor).squeeze().to(DEVICE)netG = Generator()
netG = restore_network("./", "49", netG)
fix_noise = torch.randn(BATCH_SIZE, NZ, device=DEVICE)
fix_input_c = torch.tensor([0, 0, 0, 0, 0, 0, 0, 0, 0, 0])
device = "cuda" if torch.cuda.is_available() else "cpu"
fix_input_c = onehot(fix_input_c, NUM_CLASS)
fix_input_c = fix_input_c.to(device)
fix_noise = fix_noise.to(device)
netG = netG.to(device)
#fake_imgs = netG(fix_noise, fix_input_c).detach().cpu()# images = recover_image(fake_imgs)
# full_image = np.full((1 * 64, 10 * 64, 3), 0, dtype="uint8")
# for i in range(10):
#     row = i // 10
#     col = i % 10
#     full_image[row * 64:(row + 1) * 64, col * 64:(col + 1) * 64, :] = images[i]#fix_noise = torch.randn(BATCH_SIZE, NZ, device=DEVICE)
full_image = np.full((10 * 64, 10 * 64, 3), 0, dtype="uint8")
for num in range(10):input_c = torch.tensor(np.ones(10, dtype="int64") * num)input_c = onehot(input_c, NUM_CLASS)fix_noise = fix_noise.to(device)input_c = input_c.to(device)fake_imgs = netG(fix_noise, input_c).detach().cpu()images = recover_image(fake_imgs)for i in range(10):row = numcol = i % 10full_image[row * 64:(row + 1) * 64, col * 64:(col + 1) * 64, :] = images[i]plt.imshow(full_image)
plt.show()
plt.imsave("hah.png", full_image)

这篇关于CGAN原理讲解与源码的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/429103

相关文章

Java集合中的List超详细讲解

《Java集合中的List超详细讲解》本文详细介绍了Java集合框架中的List接口,包括其在集合中的位置、继承体系、常用操作和代码示例,以及不同实现类(如ArrayList、LinkedList和V... 目录一,List的继承体系二,List的常用操作及代码示例1,创建List实例2,增加元素3,访问元

Python使用国内镜像加速pip安装的方法讲解

《Python使用国内镜像加速pip安装的方法讲解》在Python开发中,pip是一个非常重要的工具,用于安装和管理Python的第三方库,然而,在国内使用pip安装依赖时,往往会因为网络问题而导致速... 目录一、pip 工具简介1. 什么是 pip?2. 什么是 -i 参数?二、国内镜像源的选择三、如何

Python itertools中accumulate函数用法及使用运用详细讲解

《Pythonitertools中accumulate函数用法及使用运用详细讲解》:本文主要介绍Python的itertools库中的accumulate函数,该函数可以计算累积和或通过指定函数... 目录1.1前言:1.2定义:1.3衍生用法:1.3Leetcode的实际运用:总结 1.1前言:本文将详

MySQL中的MVCC底层原理解读

《MySQL中的MVCC底层原理解读》本文详细介绍了MySQL中的多版本并发控制(MVCC)机制,包括版本链、ReadView以及在不同事务隔离级别下MVCC的工作原理,通过一个具体的示例演示了在可重... 目录简介ReadView版本链演示过程总结简介MVCC(Multi-Version Concurr

Redis的Zset类型及相关命令详细讲解

《Redis的Zset类型及相关命令详细讲解》:本文主要介绍Redis的Zset类型及相关命令的相关资料,有序集合Zset是一种Redis数据结构,它类似于集合Set,但每个元素都有一个关联的分数... 目录Zset简介ZADDZCARDZCOUNTZRANGEZREVRANGEZRANGEBYSCOREZ

Go中sync.Once源码的深度讲解

《Go中sync.Once源码的深度讲解》sync.Once是Go语言标准库中的一个同步原语,用于确保某个操作只执行一次,本文将从源码出发为大家详细介绍一下sync.Once的具体使用,x希望对大家有... 目录概念简单示例源码解读总结概念sync.Once是Go语言标准库中的一个同步原语,用于确保某个操

Redis主从/哨兵机制原理分析

《Redis主从/哨兵机制原理分析》本文介绍了Redis的主从复制和哨兵机制,主从复制实现了数据的热备份和负载均衡,而哨兵机制可以监控Redis集群,实现自动故障转移,哨兵机制通过监控、下线、选举和故... 目录一、主从复制1.1 什么是主从复制1.2 主从复制的作用1.3 主从复制原理1.3.1 全量复制

Redis主从复制的原理分析

《Redis主从复制的原理分析》Redis主从复制通过将数据镜像到多个从节点,实现高可用性和扩展性,主从复制包括初次全量同步和增量同步两个阶段,为优化复制性能,可以采用AOF持久化、调整复制超时时间、... 目录Redis主从复制的原理主从复制概述配置主从复制数据同步过程复制一致性与延迟故障转移机制监控与维

SpringCloud配置动态更新原理解析

《SpringCloud配置动态更新原理解析》在微服务架构的浩瀚星海中,服务配置的动态更新如同魔法一般,能够让应用在不重启的情况下,实时响应配置的变更,SpringCloud作为微服务架构中的佼佼者,... 目录一、SpringBoot、Cloud配置的读取二、SpringCloud配置动态刷新三、更新@R

Java汇编源码如何查看环境搭建

《Java汇编源码如何查看环境搭建》:本文主要介绍如何在IntelliJIDEA开发环境中搭建字节码和汇编环境,以便更好地进行代码调优和JVM学习,首先,介绍了如何配置IntelliJIDEA以方... 目录一、简介二、在IDEA开发环境中搭建汇编环境2.1 在IDEA中搭建字节码查看环境2.1.1 搭建步