StyleGAN 使用指南:生成更逼真的图片

2023-11-27 16:30

本文主要是介绍StyleGAN 使用指南:生成更逼真的图片,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

StyleGAN 使用指南:生成更逼真的图片

    • 提出背景:特征纠缠
    • StyleGAN-v1 网络结构
      • 映射网络 Mapping network f
      • 生成网络 Synthesis network g
      • 训练技巧
        • 样式混合 mixing regularization
        • 截断 Truncation Trick
      • 评估指标
        • 路径长度 Perceptual path length
        • 解耦:让映射空间实现线性可分性
    • StyleGAN-v2
    • StyleGAN-v3
    • StyleGAN-XL
    • StyleGAN-T
    • 项目代码

 


提出背景:特征纠缠

传统的生成网络中,有一个问题存在,就是特征纠缠。

比如你想要给人脸模型增加一头卷发,但当你调整与发型相关的参数时,你可能会发现模型生成的人脸同时也改变了肤色、眼睛间距或者表情。这是因为卷发的特征与其他特征在潜在空间中是纠缠的。

StyleGAN-v1 网络结构

在这里插入图片描述
分为俩部分:映射网络 Mapping network f、生成网络 Synthesis network g

映射网络 Mapping network f

  • 映射网络 Mapping network f:把 原始数据 z 转成 向量w,解决特征纠缠。

    如上图,输入z(512维),经过 8 个全连接层,得到w(512维)。

    原始数据(z向量)就像是一个复杂的信号,它包含了所有可能的图像生成因素混合在一起,这些因素包括形状、纹理、颜色和其他视觉细节。

    这个向量空间通常高度纠缠,使得直接操作单个因素变得困难,因为改变一个维度可能会影响到多个属性。

    映射网络的任务就是像解码器一样工作,它将这个复杂的、高度纠缠的信号转换成一个新的、更加有序的中间潜在空间,即风格空间,其中的每个维度尽可能地表示独立的图像特征。

    在风格空间中,向量被重新编排和优化,以便单个维度更有可能对应于图像中的单一生成因素。这允许模型生成器在生成图像时对特定的视觉属性进行精细的控制和调整,而不是一次性调整所有特征。

    如上图,向量 w 经过仿射变换 A,得到风格向量 S(style)

生成网络 Synthesis network g

  • 生成网络 Synthesis network g : 用于生成图像

    把风格向量S输入AdaIN层。

    在此前的风格迁移方法中,每个网络只能对应一个特定的风格,而且速度较慢。但是基于AdaIN,我们可以通过“自我调节”生成器的方式快速实现任意图像风格的转换。

    特征图的均值和方差包含了图像的风格信息。在AdaIN层中,通过将特征图减去自身的均值再除以方差,实现去除原有风格的效果。然后乘以新风格的方差再加上均值,实现风格转换的目的。

    A d a I N ( x i , y ) = σ ( y ) ∗ ( x i − μ ( x i ) σ ( x i ) + μ ( y ) AdaIN(x_{i}, y) = σ(y) * \frac{(x_{i} - μ(x_{i})}{ σ(x_{i}) } + μ(y) AdaIN(xi,y)=σ(y)σ(xi)(xiμ(xi)+μ(y),y 是风格, x i x_{i} xi 是第 i 层

    仿射变换过程: 1 ∗ 512 1*512 1512维向量W -> 学习仿射变换A -> 风格向量Style 2 ∗ n 2*n 2n维向量, y s , i , y b , i y_{s,i},~y_{b,i} ys,i, yb,i

    A d a I N ( x i , y ) = y s , i ∗ ( x i − μ ( x i ) σ ( x i ) + y b , i AdaIN(x_{i}, y) = y_{s,i} * \frac{(x_{i} - μ(x_{i})}{ σ(x_{i}) } + y_{b,i} AdaIN(xi,y)=ys,iσ(xi)(xiμ(xi)+yb,i

    因为AdaIN层是归一化操作(缩放 + 偏移),通道是独立的(每个通道的特征图,其归一化系数是独立计算的,不受其他通道的影响),所以每个AdaIN层都需要俩个系数,分别对应缩放、偏移。

    在AdaIN模块之前向每个通道添加一个缩放过的噪声(Noise),增加生成图像的多样性, B 表示可学习的权重系数
    在这里插入图片描述

    9 级分辨率:生成器从较低分辨率开始,通过一系列的上采样和卷积操作逐渐增加图像的分辨率。每次上采样操作将图像的分辨率乘以2。例如,从4x4到8x8,再到16x16,依此类推。

在这里插入图片描述
9级分辨率表示经过9次上采样后,影响的特征从宏观到微观。

如人脸:

  • 4 2 − 8 2 4^{2} - 8^{2} 4282 是宏观特征(人脸姿态、形状、发型特征)
  • 1 6 2 − 3 2 2 16^{2}-32^{2} 162322 是精细特征(眼睛睁闭)
  • 6 4 2 − 102 4 2 64^{2}-1024^{2} 64210242 是微观特征(眼睛、头发、皮肤的纹理、颜色特征)

修改不同分辨率的风格向量,就能修改到人脸的属性的特征。

训练技巧

样式混合 mixing regularization

样式混合:随机交换量 w 向量的部分内容,进行拼接,防止相邻特征耦合。

比如小明的脸型,配小红的头发、小明的宏观特征,配小宏的精细特征。

如果一个人的眼睛位于人脸的上部,那么鼻子很可能位于眼睛的下方。这种相关性是由于人脸的结构和几何关系所决定的。

当我们使用特征向量来表示人脸时,这种相关性可能会导致特征之间的耦合。

例如,如果我们使用一个特征向量来表示眼睛的形状和位置,另一个特征向量来表示鼻子的形状和位置,那么这两个特征向量中的部分内容可能会相互影响。

在这种情况下,如果我们想要对眼睛和鼻子进行独立的分析和处理,相邻特征之间的耦合可能会干扰我们的结果。

拼接的特征向量的每个位置的特征来自于不同的人的人脸。这样的混合可以确保在新的特征向量中,每个位置的特征来自于不同的人的人脸,从而避免了相邻特征之间的耦合。

截断 Truncation Trick

截断 Truncation Trick:解决低密度区域的生成质量问题。

低密度区域是,某些属性总体分布比例低,如长发及腰的男性。

  • 找到数据的平均点
  • 计算其他所有点,到平均点的距离
  • 对每个距离按照统一标准进行压缩

这样就能将数据点都聚拢了,但是又不会改变点与点之间的距离关系。

举个例子,有10个男性和10个女性的数据点。

只有1个男性是长发及腰的。

我们计算每个数据点到平均点的距离,并选择一个阈值为2。

根据距离,我们发现长发及腰的男性距离平均点的距离较远,超过了阈值。

们将低密度区域中的数据点(即只有1个长发及腰的男性)聚拢在一起,并移动到与平均点距离最近的位置,同时保持其他数据点之间的距离关系不变。

评估指标

路径长度 Perceptual path length

潜在向量Latent:生成器是否选择的路线,如果是最近,那就是好的潜在向量。

如下图紫线上随机采样一个点,还是狗子的图片,就是选择了最近的路线;而绿线采样是床,就绕远了。

怎么评估这个路径长度呢?

在训练过程中,我们可以选择相邻的时间节点,并计算它们生成的图像之间的路径长度,最后得这些距离的平均值。

较小的路径长度表示生成图像之间更加相似,而较大的路径长度则表示它们之间存在较大的差异。

  • t :某一时间点
  • d :空间距离
  • skerp :采样方法
  • E :平均值
解耦:让映射空间实现线性可分性

假设我们有一个人脸生成模型,可以根据输入的随机向量生成逼真的人脸图像。使用传统的生成模型,如果我们想要生成特定属性的人脸,比如男性或女性,通常需要在随机向量的某些维度上进行微调。但是这种方式不够直观,而且可能需要花费大量时间来搜索合适的向量。

而解耦的思想则可以改善这个问题。通过解耦,我们可以将生成模型的随机向量分为多个独立的部分,每个部分对应于一个特定的属性,比如年龄、性别、发色等。这样,我们可以直接在这些特定属性的部分进行调整,而不会影响其他属性。例如,如果我们想要生成一个年轻女性的人脸,我们只需要在性别和年龄属性的部分进行调整,而不需要关心其他属性。这使得我们能够更直观地控制生成的人脸属性,同时减少了搜索的时间和计算量。

总而言之,解耦的思想通过将生成模型的随机向量分为多个独立的部分,让我们能够更直观地控制生成的属性,提高了生成模型的可操作性和效率。

StyleGAN-v2

StyleGAN-v3

StyleGAN-XL

StyleGAN-T

项目代码

StyleGAN:https://github.com/NVlabs/stylegan

StyleGAN2:https://github.com/NVlabs/stylegan2

StyleGAN3:https://github.com/NVlabs/stylegan3

Stylegan-xl:https://github.com/autonomousvision/stylegan-xl

Stylegan-t:https://github.com/autonomousvision/stylegan-t

这篇关于StyleGAN 使用指南:生成更逼真的图片的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/428006

相关文章

什么是cron? Linux系统下Cron定时任务使用指南

《什么是cron?Linux系统下Cron定时任务使用指南》在日常的Linux系统管理和维护中,定时执行任务是非常常见的需求,你可能需要每天执行备份任务、清理系统日志或运行特定的脚本,而不想每天... 在管理 linux 服务器的过程中,总有一些任务需要我们定期或重复执行。就比如备份任务,通常会选在服务器资

详解Java中如何使用JFreeChart生成甘特图

《详解Java中如何使用JFreeChart生成甘特图》甘特图是一种流行的项目管理工具,用于显示项目的进度和任务分配,在Java开发中,JFreeChart是一个强大的开源图表库,能够生成各种类型的图... 目录引言一、JFreeChart简介二、准备工作三、创建甘特图1. 定义数据集2. 创建甘特图3.

使用 Python 和 LabelMe 实现图片验证码的自动标注功能

《使用Python和LabelMe实现图片验证码的自动标注功能》文章介绍了如何使用Python和LabelMe自动标注图片验证码,主要步骤包括图像预处理、OCR识别和生成标注文件,通过结合Pa... 目录使用 python 和 LabelMe 实现图片验证码的自动标注环境准备必备工具安装依赖实现自动标注核心

Java操作xls替换文本或图片的功能实现

《Java操作xls替换文本或图片的功能实现》这篇文章主要给大家介绍了关于Java操作xls替换文本或图片功能实现的相关资料,文中通过示例代码讲解了文件上传、文件处理和Excel文件生成,需要的朋友可... 目录准备xls模板文件:template.xls准备需要替换的图片和数据功能实现包声明与导入类声明与

基于C#实现将图片转换为PDF文档

《基于C#实现将图片转换为PDF文档》将图片(JPG、PNG)转换为PDF文件可以帮助我们更好地保存和分享图片,所以本文将介绍如何使用C#将JPG/PNG图片转换为PDF文档,需要的可以参考下... 目录介绍C# 将单张图片转换为PDF文档C# 将多张图片转换到一个PDF文档介绍将图片(JPG、PNG)转

Qt QWidget实现图片旋转动画

《QtQWidget实现图片旋转动画》这篇文章主要为大家详细介绍了如何使用了Qt和QWidget实现图片旋转动画效果,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 一、效果展示二、源码分享本例程通过QGraphicsView实现svg格式图片旋转。.hpjavascript

AI一键生成 PPT

AI一键生成 PPT 操作步骤 作为一名打工人,是不是经常需要制作各种PPT来分享我的生活和想法。但是,你们知道,有时候灵感来了,时间却不够用了!😩直到我发现了Kimi AI——一个能够自动生成PPT的神奇助手!🌟 什么是Kimi? 一款月之暗面科技有限公司开发的AI办公工具,帮助用户快速生成高质量的演示文稿。 无论你是职场人士、学生还是教师,Kimi都能够为你的办公文

使用opencv优化图片(画面变清晰)

文章目录 需求影响照片清晰度的因素 实现降噪测试代码 锐化空间锐化Unsharp Masking频率域锐化对比测试 对比度增强常用算法对比测试 需求 对图像进行优化,使其看起来更清晰,同时保持尺寸不变,通常涉及到图像处理技术如锐化、降噪、对比度增强等 影响照片清晰度的因素 影响照片清晰度的因素有很多,主要可以从以下几个方面来分析 1. 拍摄设备 相机传感器:相机传

pdfmake生成pdf的使用

实际项目中有时会有根据填写的表单数据或者其他格式的数据,将数据自动填充到pdf文件中根据固定模板生成pdf文件的需求 文章目录 利用pdfmake生成pdf文件1.下载安装pdfmake第三方包2.封装生成pdf文件的共用配置3.生成pdf文件的文件模板内容4.调用方法生成pdf 利用pdfmake生成pdf文件 1.下载安装pdfmake第三方包 npm i pdfma

poj 1258 Agri-Net(最小生成树模板代码)

感觉用这题来当模板更适合。 题意就是给你邻接矩阵求最小生成树啦。~ prim代码:效率很高。172k...0ms。 #include<stdio.h>#include<algorithm>using namespace std;const int MaxN = 101;const int INF = 0x3f3f3f3f;int g[MaxN][MaxN];int n