rust tokio select!宏详解

2023-11-27 08:52
文章标签 rust 详解 select tokio

本文主要是介绍rust tokio select!宏详解,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

rust tokio select!宏详解

简介

本文介绍Tokioselect!的用法,重点是使用过程中可能遇到的问题,比如阻塞问题、优先级问题、cancel safe问题。在Tokio 中,select! 是一个宏,用于同时等待多个异步任务,并在其中任意一个任务完成时执行相应的逻辑。

基本用法

如下代码演示了如何使用 Tokio 库实现一个异步的消息传递系统,其中包括三个无限通道和一个关闭通道。程序使用了 select! 宏来等待通道和关闭通道的事件,并在事件发生时执行相应的操作。

程序的主要步骤如下:

  1. 创建三个无限通道和一个用于传递关闭信号的通道。
  2. 向三个通道中发送一些数据。
  3. 开启一个异步任务并在两秒后发送关闭信号。
  4. 在主循环中使用 select! 宏等待通道和关闭通道的事件。
  5. 当一个通道接收到数据时,打印出数据。
  6. 当关闭通道接收到信号时,退出循环。

程序中的 select! 宏使用了类似于 match 的语法,但是它可以同时等待多个异步事件。当其中一个事件发生时,宏将执行相应的代码块,并跳出循环。在本例中,当一个通道接收到数据时,打印出数据;当关闭通道接收到信号时,退出循环。
select!经常与loop搭配使用,循环地从多个通道中接收事件并处理。

use std::time::Duration;use tokio::select;#[tokio::main]
async fn main() {let (sender1, mut receiver1) = tokio::sync::mpsc::unbounded_channel::<String>();let (sender2, mut receiver2) = tokio::sync::mpsc::unbounded_channel::<String>();let (sender3, mut receiver3) = tokio::sync::mpsc::unbounded_channel::<String>();let (shutdown_sender, mut shutdown_receiver) = tokio::sync::watch::channel(());for i in 0..3 {sender1.send(i.to_string()).unwrap();sender2.send(i.to_string()).unwrap();sender3.send(i.to_string()).unwrap();}tokio::spawn(async move {tokio::time::sleep(Duration::from_secs(2)).await;shutdown_sender.send(()).unwrap(); //两秒后关闭});loop {select! {ret = receiver1.recv() => {println!("channel 1 received: {:?}", ret);},ret = receiver2.recv() => {println!("channel 2 received: {:?}", ret);},ret = receiver3.recv() => {println!("channel 3 received: {:?}", ret);},_ = shutdown_receiver.changed() => {println!("shutdown received");break;}};}
}

可能遇到的坑

阻塞

select中的各个分支是并行执行的,这里的并行是指分支中的各个future在并行执行。不过一旦某个分支的future完成并进入了分支代码块,如果在分支代码中有一些阻塞的操作,则其他分支是没有机会执行的。
比如下面代码,在receiver1.recv()完成时,sleep了10s,sleep期间其他的分支是不会执行的。即使在2s后发送了shutdown信号,select!因为无法及时处理此信号,实际上循环也无法退出。

 loop {select! {ret = receiver1.recv() => {println!("channel 1 received: {:?}", ret);tokio::time::sleep(Duration::from_secs(10)).await;//这里等待期间,其他的分支是无法被执行的},ret = receiver2.recv() => {println!("channel 2 received: {:?}", ret);},ret = receiver3.recv() => {println!("channel 3 received: {:?}", ret);},_ = shutdown_receiver.changed() => {println!("shutdown received");break;}};}

这个坑在网络编程中比较容易踩到,比如select这里是从channel中取出上层应用传来的数据,并将其写入到socket中,而写socket的操作是有可能阻塞的,阻塞期间其他的分支是无法执行的。

顺序

1、默认情况下select中的各个分支执行顺序是随机的,比如上面例子中三个channel都有消息的情况下,具体去执行哪个分支是随机的。执行结果如下:
在这里插入图片描述
2、如果想要区分优先级,可以加标志biased,这样每次select将会按照从上到下的顺序去poll每个future,也就是说优先级顺序是从上往下的。比如某些场景下需要按优先级处理各个channel中的数据时这个特性就很有用。代码如下:

    loop {select! {biased;//按顺序优先执行ret = receiver1.recv() => {println!("channel 1 received: {:?}", ret);},ret = receiver2.recv() => {println!("channel 2 received: {:?}", ret);},ret = receiver3.recv() => {println!("channel 3 received: {:?}", ret);},_ = shutdown_receiver.changed() => {println!("shutdown received");break;}};}

运行结果如下:
在这里插入图片描述
3、顺序执行时注意饿死问题
添加了biased标志后,顺序靠前的future总是先被执行,在上述例子中,极端情况下如果靠前的channel总是有数据,那后面的channel就没有机会被执行。比如例子中如果前三个channel中一直有数据,那shutdown_receiver就无法收到shutdown信号,导致程序功能不符合预期。
解决这个问题很简单,就是把更关键的控制性的future放在最前方。

关于cancel safe

select!中如果某个分支future completed了,会将其他分支的future cancel掉,这个cancel操作要格外小心,因为如果future不是cancel safe的可能会丢数据。tokio的官方文档中给出了常见的cancel safe和不safefuture
那么如何判断自己实现的future是否是cancel safe的呢? 很简单、只需要思考如果future中的代码执行到.await时被cancel了,是否是安全的。我们来看下cancel unsafe的代码长啥样:

pub async fn read_and_write(mut message_recevier: UnboundedReceiver<Bytes>, mut file: File) {let message = message_recevier.recv().await.unwrap();file.write(&message).await.unwrap();
}

该方法从一个channel中读取消息,并将此消息写入到文件中,这个future就明显不是cancel safe的。为啥呢?试想一下,此futurechannel中读到消息之后,在写文件时被cancel掉了,那message岂不是就丢了。
实际项目中一定要格外小心这个cancel safe问题,很容易造成丢数据或者数据重复等不良反应,而且一旦出现了还很难复现、不太容易想到是这里的问题。网络编程中尤其要注意tokio::io::AsyncWriteExt::write_all不是cancel safe的,因为它内部可能是多次调用write操作才将所有缓冲区写入。

数量

1、首先select!中的分支仅支持显式地用代码书写,无法动态增减。就是说在写代码时select中的futures数量就固定了,程序运行过程中无法动态删减。
2、目前最多支持64个分支。

这篇关于rust tokio select!宏详解的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/427393

相关文章

C++ move 的作用详解及陷阱最佳实践

《C++move的作用详解及陷阱最佳实践》文章详细介绍了C++中的`std::move`函数的作用,包括为什么需要它、它的本质、典型使用场景、以及一些常见陷阱和最佳实践,感兴趣的朋友跟随小编一起看... 目录C++ move 的作用详解一、一句话总结二、为什么需要 move?C++98/03 的痛点⚡C++

MySQL中between and的基本用法、范围查询示例详解

《MySQL中betweenand的基本用法、范围查询示例详解》BETWEENAND操作符在MySQL中用于选择在两个值之间的数据,包括边界值,它支持数值和日期类型,示例展示了如何使用BETWEEN... 目录一、between and语法二、使用示例2.1、betwphpeen and数值查询2.2、be

python中的flask_sqlalchemy的使用及示例详解

《python中的flask_sqlalchemy的使用及示例详解》文章主要介绍了在使用SQLAlchemy创建模型实例时,通过元类动态创建实例的方式,并说明了如何在实例化时执行__init__方法,... 目录@orm.reconstructorSQLAlchemy的回滚关联其他模型数据库基本操作将数据添

Java中ArrayList与顺序表示例详解

《Java中ArrayList与顺序表示例详解》顺序表是在计算机内存中以数组的形式保存的线性表,是指用一组地址连续的存储单元依次存储数据元素的线性结构,:本文主要介绍Java中ArrayList与... 目录前言一、Java集合框架核心接口与分类ArrayList二、顺序表数据结构中的顺序表三、常用代码手动

JAVA线程的周期及调度机制详解

《JAVA线程的周期及调度机制详解》Java线程的生命周期包括NEW、RUNNABLE、BLOCKED、WAITING、TIMED_WAITING和TERMINATED,线程调度依赖操作系统,采用抢占... 目录Java线程的生命周期线程状态转换示例代码JAVA线程调度机制优先级设置示例注意事项JAVA线程

详解C++ 存储二进制数据容器的几种方法

《详解C++存储二进制数据容器的几种方法》本文主要介绍了详解C++存储二进制数据容器,包括std::vector、std::array、std::string、std::bitset和std::ve... 目录1.std::vector<uint8_t>(最常用)特点:适用场景:示例:2.std::arra

C++构造函数中explicit详解

《C++构造函数中explicit详解》explicit关键字用于修饰单参数构造函数或可以看作单参数的构造函数,阻止编译器进行隐式类型转换或拷贝初始化,本文就来介绍explicit的使用,感兴趣的可以... 目录1. 什么是explicit2. 隐式转换的问题3.explicit的使用示例基本用法多参数构造

Android使用java实现网络连通性检查详解

《Android使用java实现网络连通性检查详解》这篇文章主要为大家详细介绍了Android使用java实现网络连通性检查的相关知识,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录NetCheck.Java(可直接拷贝)使用示例(Activity/Fragment 内)权限要求

C++,C#,Rust,Go,Java,Python,JavaScript的性能对比全面讲解

《C++,C#,Rust,Go,Java,Python,JavaScript的性能对比全面讲解》:本文主要介绍C++,C#,Rust,Go,Java,Python,JavaScript性能对比全面... 目录编程语言性能对比、核心优势与最佳使用场景性能对比表格C++C#RustGoJavapythonjav

MyBatis中的两种参数传递类型详解(示例代码)

《MyBatis中的两种参数传递类型详解(示例代码)》文章介绍了MyBatis中传递多个参数的两种方式,使用Map和使用@Param注解或封装POJO,Map方式适用于动态、不固定的参数,但可读性和安... 目录✅ android方式一:使用Map<String, Object>✅ 方式二:使用@Param