STM32 的位带操作理解

2023-11-26 08:40
文章标签 操作 理解 stm32 位带

本文主要是介绍STM32 的位带操作理解,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

位带操作

  • 为什么要用位带操作?

32位处理器一次能处理4个字节即32位,不能直接对位操作,而我们需要更方便更快捷更安全的设置或读取地址中的内容。

  • 什么是位带操作?

地址空间的有一个 512MB 范围由片上外设(的寄存器)使用。这个区通过系统总线来访问。在这个区的下部,有一个 1MB 的区间,被称为“位带区”。该位带区还有一个对应的、 32MB 的“位带别名(alias)区”,容纳了 8M 个“位变量”(对比 8051 的只有 128 个位变量)。位带区对应的是最低的 1MB 地址范围。这个区中也有一条 32MB 的位带别名,以便于快捷地访问外设寄存器。例如,可以方便地访问各种控制位和状态位。要注意的是,外设区内不允许执行指令。SRAM区同样有位带区。

  • 位带区: 支持位带操作的地址区
  • 位带别名: 对别名地址的访问最终会变换成对位带区的访问(注意:这中途有一个地址映射过程)

下图为位带区和位带别名区的对应关系:
在这里插入图片描述
可以发现,位带区首地址:0x200F FFFF - 0x2000 0000 = 0xF FFFF (1Mb个地址) ,而位带别名区: 0x23FF FFFC - 0x2200 0000 = 0x1FF FFFF (32Mb个地址),的确是 1:32。又有 0x2200 0000 - 0x2000 0000 = 0x200 0000 (32Mb),0x23FF FFF0 - 0x200F FFFF = 0x3EFFFF1 (62Mb),即位带别名区和位带区并非相邻的,而是相隔 32Mb 的内存空间(用作其他用途)。且位带区相互之间对应的位带别名区也不是连续的。

QUESTION:为什么位带别名区与位带区的地址相差32Mb?

  • 如何位带操作?

在位带区中,每个比特都映射到别名地址区的一个字——这是个只有 LSB 才有效的字。当一个别名地址被访问时,会先把该地址变换成位带地址。对于操作,读取位带地址中的一个字,再把需要的位右移到 LSB,并把 LSB 返回。对于操作,把需要写的位左移至对应的位序号处,然后执行一个原子的 “读-改-写” 过程。

  • 支持位带操作的两个内存区的范围是:

    0x2000_0000-0x200F_FFFF(SRAM 区中的最低 1MB)

    0x4000_0000-0x400F_FFFF(片上外设区中的最低 1MB)

对于片上外设位带区的某个比特,记它所在字节的地址为 A,位序号为 n(0<=n<=7),则该比特在别名区的地址为:

AliasAddr = 0x42000000 + ((A-0x40000000)*8+n)*4 =0x42000000 + (A-0x40000000)*32 + n*4

上式中,“*4” 表示一个字为 4 个字节,“*8” 表示一个字节中有 8 个比特。

在STM32中,上式可理解为 
addr(GPIOx.y) = (addr(GPIO_BASE) + 0x200 0000) + (GPIOx-GPIO_BASE)*32 + y*4位带别名区的起始地址           外设的偏移地址 1:32  别名区以4字节为步进单位  (                   外设的别名区起始地址              )       

上式中,x = (A, B, C, …),y 为 bit 位。GPIO_BASE 为 IO 口的起始地址。

举例:欲设置地址 0x2000_0000 中的比特 2,则使用位带操作的设置过程如下图所示:
在这里插入图片描述

对应的汇编代码如下图:
在这里插入图片描述
位带读操作相对简单些:
在这里插入图片描述
对应的汇编代码如下图:
在这里插入图片描述
例子:

  1. 在地址 0x40000000 处写入 0x3355AACC。
  2. 读取地址 0x42000008。本次读访问将读取 0x20000000,并提取比特 2,值为 1。
  3. 往地址 0x42000008 处写 0。本次操作将被映射成对地址 0x40000000 的 “读-改-写” 操作
    (原子的),把比特 2 清 0。
  4. 现在再读取 0x40000000,将返回 0x3355AAC8(bit[2]已清零)。
    位带别名区的字只有 LSB 有意义。另外,在访问位带别名区时,不管使用哪一种长度的数据传
    送指令(字/半字/字节),都把地址对齐到字的边界上,否则会产生不可预料的结果。
  • 在 C 编译器中使用位带操作

C 编译器中并没有直接支持位带操作。比如, C 编译器并不知道同一块内存能够使用不同的地址来访问,也不知道对位带别名区的访问只对 LSB 有效。欲在 C 中使用位带操作,最简单的做法就是 #define 一个位带别名区的地址。例如:

#define DEVICE_REG0 ((volatile unsigned long *) (0x40000000))
#define DEVICE_REG0_BIT0 ((volatile unsigned long *) (0x42000000))
#define DEVICE_REG0_BIT1 ((volatile unsigned long *) (0x42000004))
...
*DEVICE_REG0 = 0xAB; //使用正常地址访问寄存器
...
*DEVICE_REG0 = *DEVICE_REG0 | 0x2; //使用传统方法设置 bit1
...
*DEVICE_REG0_BIT1 = 0x1; // 通过位带别名地址设置 bit1

为简化位带操作,也可以定义一些。比如,我们可以建立一个把 “位带地址+位序号” 转换成别名地址的宏,再建立一个把别名地址转换成指针类型的宏:

// 把 “位带地址+位序号” 转换成 别名地址 的宏    
//                                 外设的基地址                  外设地址区域<=1Mb
#define BITBAND(addr, bitnum) ((addr & 0xF0000000)+0x2000000+((addr & 0xFFFFF)<<5) +(bitnum<<2))
// 把该地址转换成一个指针
#define MEM_ADDR(addr) *((volatile unsigned long *) (adr))
// 在此基础上,我们就可以如下改写代码:
MEM_ADDR(DEVICE_REG0) = 0xAB; //使用正常地址访问寄存器
MEM_ADDR(DEVICE_REG0)= MEM_ADDR(DEVICE_REG0) | 0x2; //传统做法
MEM_ADDR(BITBAND(DEVICE_REG0,1)) = 0x1; //使用位带别名地址

注意:当使用位带功能时,要访问的变量必须用 volatile 来定义。因为 C 编译器并不知道同一个比特可以有两个地址。所以就要通过 volatile,使得编译器每次都如实地把新数值写入存储器(内存),而不再会出于优化的考虑,在中途使用寄存器来操作数据的复本,直到最后才把复本写回——这会导致按不同的方式访问同一个位会得到不一致的结果。

  • STM32内的位带操作整理

CM3的预定义的存储器映射如下:
在这里插入图片描述

  • 其中 512M 的片上外设区和片上SRAM区都具有1M的位带区以及对应的32M未带别名区。

对应于 STM32F103RCT6 内存映射如下:
在这里插入图片描述
[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-NDEvO5Y7-1575361121600)(assets/image-20191203144040531.png)]

  • 可知外设区位带区地址 0x4000 0000 - 0x400F FFFF 基本涵盖了所有的外设寄存器,从而使得读改外设的效率提高。

以 GPIO 的位带操作为例:

// IO口操作宏定义
#define BITBAND(addr, bitnum) ((addr & 0xF0000000)+0x2000000+((addr & 0xFFFFF)<<5)+(bitnum<<2)) 
#define MEM_ADDR(addr)  *((volatile unsigned long  *)(addr)) 
#define BIT_ADDR(addr, bitnum)   MEM_ADDR(BITBAND(addr, bitnum)) // stm32f10x.h
#define PERIPH_BASE           ((uint32_t)0x40000000) /*!< Peripheral base address in the alias region */
#define APB2PERIPH_BASE       (PERIPH_BASE + 0x10000)
#define GPIOA_BASE            (APB2PERIPH_BASE + 0x0800)

GPIOx_ODR 寄存器如下:
在这里插入图片描述
每个寄存器32位,占4个地址(4 x 8),在访问或修改某个寄存器时,是从首地址开始的,逻辑运算则是直接可涵盖到32bit,offset 为 0x0C。GPIOA 的地址在 stm32 的 datasheet 中给出为 0x40010800
在这里插入图片描述

// IO口映射
#define GPIOA_ODR_Addr    (GPIOA_BASE+0x0C) //0x4001080C 
#define GPIOB_ODR_Addr    (GPIOB_BASE+0x0C) //0x40010C0C 
#define GPIOC_ODR_Addr    (GPIOC_BASE+0x0C) //0x4001100C 
#define GPIOD_ODR_Addr    (GPIOD_BASE+0x0C) //0x4001140C 
#define GPIOE_ODR_Addr    (GPIOE_BASE+0x0C) //0x4001180C 
#define GPIOF_ODR_Addr    (GPIOF_BASE+0x0C) //0x40011A0C    
#define GPIOG_ODR_Addr    (GPIOG_BASE+0x0C) //0x40011E0C    // 类似的,GPIOx_IDR的offset为 0x08.
#define GPIOA_IDR_Addr    (GPIOA_BASE+8) //0x40010808 
#define GPIOB_IDR_Addr    (GPIOB_BASE+8) //0x40010C08 
#define GPIOC_IDR_Addr    (GPIOC_BASE+8) //0x40011008 
#define GPIOD_IDR_Addr    (GPIOD_BASE+8) //0x40011408 
#define GPIOE_IDR_Addr    (GPIOE_BASE+8) //0x40011808 
#define GPIOF_IDR_Addr    (GPIOF_BASE+8) //0x40011A08 
#define GPIOG_IDR_Addr    (GPIOG_BASE+8) //0x40011E08 // IO口操作,只对单一的IO口
// 确保n的值小于16:
// stm32的GPIOx只有16个bit,一个地址8bit,该16bit的地址是连续的,从而位带操作不受影响
#define PAout(n)   BIT_ADDR(GPIOA_ODR_Addr,n)  // 输出
#define PAin(n)    BIT_ADDR(GPIOA_IDR_Addr,n)  // 输入#define PBout(n)   BIT_ADDR(GPIOB_ODR_Addr,n)  
#define PBin(n)    BIT_ADDR(GPIOB_IDR_Addr,n)  #define PCout(n)   BIT_ADDR(GPIOC_ODR_Addr,n)   
#define PCin(n)    BIT_ADDR(GPIOC_IDR_Addr,n)  #define PDout(n)   BIT_ADDR(GPIOD_ODR_Addr,n)  
#define PDin(n)    BIT_ADDR(GPIOD_IDR_Addr,n) #define PEout(n)   BIT_ADDR(GPIOE_ODR_Addr,n)  
#define PEin(n)    BIT_ADDR(GPIOE_IDR_Addr,n)  #define PFout(n)   BIT_ADDR(GPIOF_ODR_Addr,n)  
#define PFin(n)    BIT_ADDR(GPIOF_IDR_Addr,n)  #define PGout(n)   BIT_ADDR(GPIOG_ODR_Addr,n)  
#define PGin(n)    BIT_ADDR(GPIOG_IDR_Addr,n)  

这篇关于STM32 的位带操作理解的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/425399

相关文章

PyCharm接入DeepSeek实现AI编程的操作流程

《PyCharm接入DeepSeek实现AI编程的操作流程》DeepSeek是一家专注于人工智能技术研发的公司,致力于开发高性能、低成本的AI模型,接下来,我们把DeepSeek接入到PyCharm中... 目录引言效果演示创建API key在PyCharm中下载Continue插件配置Continue引言

使用Python实现操作mongodb详解

《使用Python实现操作mongodb详解》这篇文章主要为大家详细介绍了使用Python实现操作mongodb的相关知识,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录一、示例二、常用指令三、遇到的问题一、示例from pymongo import MongoClientf

使用MongoDB进行数据存储的操作流程

《使用MongoDB进行数据存储的操作流程》在现代应用开发中,数据存储是一个至关重要的部分,随着数据量的增大和复杂性的增加,传统的关系型数据库有时难以应对高并发和大数据量的处理需求,MongoDB作为... 目录什么是MongoDB?MongoDB的优势使用MongoDB进行数据存储1. 安装MongoDB

Linux使用fdisk进行磁盘的相关操作

《Linux使用fdisk进行磁盘的相关操作》fdisk命令是Linux中用于管理磁盘分区的强大文本实用程序,这篇文章主要为大家详细介绍了如何使用fdisk进行磁盘的相关操作,需要的可以了解下... 目录简介基本语法示例用法列出所有分区查看指定磁盘的区分管理指定的磁盘进入交互式模式创建一个新的分区删除一个存

Golang操作DuckDB实战案例分享

《Golang操作DuckDB实战案例分享》DuckDB是一个嵌入式SQL数据库引擎,它与众所周知的SQLite非常相似,但它是为olap风格的工作负载设计的,DuckDB支持各种数据类型和SQL特性... 目录DuckDB的主要优点环境准备初始化表和数据查询单行或多行错误处理和事务完整代码最后总结Duck

C# 读写ini文件操作实现

《C#读写ini文件操作实现》本文主要介绍了C#读写ini文件操作实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧... 目录一、INI文件结构二、读取INI文件中的数据在C#应用程序中,常将INI文件作为配置文件,用于存储应用程序的

Python使用qrcode库实现生成二维码的操作指南

《Python使用qrcode库实现生成二维码的操作指南》二维码是一种广泛使用的二维条码,因其高效的数据存储能力和易于扫描的特点,广泛应用于支付、身份验证、营销推广等领域,Pythonqrcode库是... 目录一、安装 python qrcode 库二、基本使用方法1. 生成简单二维码2. 生成带 Log

Java操作ElasticSearch的实例详解

《Java操作ElasticSearch的实例详解》Elasticsearch是一个分布式的搜索和分析引擎,广泛用于全文搜索、日志分析等场景,本文将介绍如何在Java应用中使用Elastics... 目录简介环境准备1. 安装 Elasticsearch2. 添加依赖连接 Elasticsearch1. 创

一文带你理解Python中import机制与importlib的妙用

《一文带你理解Python中import机制与importlib的妙用》在Python编程的世界里,import语句是开发者最常用的工具之一,它就像一把钥匙,打开了通往各种功能和库的大门,下面就跟随小... 目录一、python import机制概述1.1 import语句的基本用法1.2 模块缓存机制1.

深入理解C语言的void*

《深入理解C语言的void*》本文主要介绍了C语言的void*,包括它的任意性、编译器对void*的类型检查以及需要显式类型转换的规则,具有一定的参考价值,感兴趣的可以了解一下... 目录一、void* 的类型任意性二、编译器对 void* 的类型检查三、需要显式类型转换占用的字节四、总结一、void* 的