mysql锁机制要览+示例讲解

2023-11-23 17:10

本文主要是介绍mysql锁机制要览+示例讲解,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

作者:杨恒

背景

2、隔离级别

理论

1、read uncommited
可以读取未提交记录。此隔离级别,不会使用,忽略
2、read commited
针对当前读,rc隔离级别保证对读取到的记录加锁(记录锁),存在幻读现象
3、repeatable read
针对当前读,rr隔离级别保证对读取到的记录加锁(记录锁),同时保证对读取的范围加锁,新的满足查询条件的记录不能插入(间隙锁),不存在幻读现象
4、seriablizable
从mvcc并发控制退化为基于锁的并发控制。不区别快照读和当前读,所有的读操作均为当前读,读加读锁(S锁),写加写锁(X锁)

隔离级别脏读可能性不可重复读可能性幻读可能性加锁读
read uncommitedyesyesyesno
read commitednoyesyesno
repeatable readnonoyesno
serializablenononoyes

5、rc 与rr对比:
set global transaction isolation level read commited;
set global transaction isolation level repeatable read;

测试

drop table if exists t;
create table t(id int,name varchar(10),key idx_id(id),primary key(name))engine=innodb;
insert into t values(1,‘a’),(3,‘c’),(5,‘e’),(8,‘g’),(11,‘j’);

t1t2
begin;
select * from t where id=1;
commit;
begin;
update t set name=‘yy’ where id=1;
commit;

3、锁

理论

基本锁:共享锁与排它锁

mysql允许拿到S锁的事务读一行,允许拿到X锁的事务更新或删除一行
加了S锁的记录,允许其他事务再加S锁,不允许其他事务再加X锁;
加了X锁的记录,不允许其他事务再加S锁或X锁

mysql对外提供加这两种锁的语法如下:
加S锁: select … lock in share mode
加X锁: select … for update

意向锁(表级锁):意向共享锁(IS锁)和意向排它锁(IX锁)

事务在请求S锁和X锁前,需要先获得对应的IS、IX锁
意向锁产生的主要目的是为了处理行锁和表锁之间的冲突,用于表明“某个事务正在某一行上持有了锁,或者准备去持有锁”

共享锁、排它锁与意向锁的兼容矩阵(先行后列)

 XIXSIS
X冲突冲突冲突冲突
IX冲突冲突兼容兼容
S冲突冲突兼容兼容
IS冲突兼容兼容兼容
行锁
记录锁

仅仅锁住索引记录的一行。单行索引记录上加锁,record lock锁住的永远是索引,而非记录本身,即使该表上没有任何索引,那么innodb会在后台创建一个隐藏的聚簇主键索引,那么锁住的就是这个隐藏的聚簇主键索引。
所以说当一条sql没有走任何索引时,那么将会在每一条聚簇索引后面加X锁,这个类似于表锁,但原理上和表锁应该是完全不同的。(Is it true??)

间隙锁

区间锁,仅仅锁住一个索引区间(开区间)
在索引记录之间的间隙中加锁,或者是在某一条索引记录之前或之后加锁,并不包括该索引记录本身

next-key锁

record lock + gap lock,左开右闭区间。默认情况下,innodb使用next-key locks来锁定记录。但当查询的索引含有唯一属性的时候,next-key lock会进行优化,将其降级为record lock,即仅锁住索引本身,不是范围

插入意向锁:特殊的间隙锁

gap lock中存在一种插入意向锁,在insert操作时产生。在多事务同时写入不同数据至同一索引间隙的时候,并不需要等待其他事务完成,不会发生锁等待。
假设有一个记录索引包含键值4和7,不同的事务分别插入5和6,每个事务都会产生一个加在4-7之间的插入意向锁,获取在插入行上的排它锁,但是不会被互相锁住,因为数据行并不冲突。

行锁的兼容矩阵 (先列(如gap)后行的锁定顺序)

 gapinsertrecordnext-key
gap兼容兼容兼容兼容
insert冲突兼容兼容冲突
record兼容兼容冲突冲突
next-key兼容兼容冲突冲突

1、已有的insert锁不阻止任何准备加的锁
2、gap、next-key会阻止insert
3、gap和record、next-key不会冲突
4、record和record、next-key之间相互冲突

4、测试

实例一、

t1t2
begin;
select * from t where id=8 for update;
commit;
begin;
insert into t values(4);
insert into t values(5);
insert into t values(6);
insert into t values(11);
insert into t values(12);
rollback;

drop table if exists t;
create table t(id int,key idx_a(id))engine=innodb;
insert into t values(1),(3),(5),(8),(11);
select * from t;

分析:
因为innoDB对于行的查询都是采用了next-key lock的算法,锁定的不是单个值,而是一个范围。上面索引值有(1,3,5,8,11),其记录的gap区间如下:是一个左开右闭的空间(原因是默认主键的有序自增的特性,结合后面的例子说明)(-∞,1],(1,3],(3,5],(5,8],(8,11],(11,+∞)
innoDB存储引擎还会对辅助索引下一个键值加上gap lock。

实例二、

t1t2
begin;
delete from t where id=8;
commit;
begin;
insert into t(id,name) values(6,‘f’);
insert into t(id,name) values(5,‘e1’);
insert into t(id,name) values(8,‘gg’);
insert into t(id,name) values(10,‘p’);
insert into t(id,name) values(11,‘iz’);
insert into t(id,name) values(5,‘cz’);

分析:因为会话1已经对id=8的记录加了一个X锁,由于是RR隔离级别,innodb要防止幻读需要加gap锁:即id=5(8的左边),id=11(8的右边)之间需要加间隙锁(gap)。这样[5,e]和[8,g],[8,g]和[11,j]之间的数据都要被锁。上面测试已经验证了这一点,根据索引的有序性,数据按照主键name排序,后面写入的[5,cz] ([5,e]的左边)和[11,ja] ([11,j]的右边)不属于上面的范围从而可以写入。

实例三、

t1t2
begin;
select * from t where id=8 for update;
commit;
begin;
insert into t values(7);
insert into t values(9);
rollback;

drop table if exists t;
create table t(id int primary key)engine=innodb;
insert into t values(1),(3),(5),(8),(11);
select * from t;

分析:
因为innoDB对于行的查询都是采用了next-key lock的算法,锁定的不是单个值,而是一个范围,按照这个方法和第一个测试结果一样。但是,当查询的索引含有唯一属性的时候,next-key lock会进行优化,将其降级为record lock,即仅锁住索引本身,不是范围。

实例四、

t1t2
begin;
select * from t where id=15 for update;
commit;
begin;
insert into t(id,name) values(10,‘k’);
insert into t(id,name) values(12,‘k’);
rollback;

drop table if exists t;
create table t(id int,name varchar(10),primary key(id))engine=innodb;
insert into t values(1,‘a’),(3,‘c’),(5,‘e’),(8,‘g’),(11,‘j’);
select * from t;

分析:
通过主键或者唯一索引来锁定不存在的值,也会产生gap锁定。

5、死锁

show engine innodb status;

duplicate key error 引发的死锁

drop table if exists t;
create table t(id int(10) unsigned not null ,
name varchar(20) not null default ‘’,
age int(11) not null default ‘0’ ,
stage int(11) not null default ‘0’ ,
primary key(id),
unique key udx_name(name),
key idx_stage(stage))engine=innodb;

insert into t(id,name,age,stage) values(1,‘yst’,11,8),(2,‘dxj’,7,4),(3,‘lb’,13,7),(4,‘zsq’,5,7),(5,‘lxr’,13,4);
select * from t;
select * from information_schema.innodb_locks;

t1t2t3
begin;
insert into t values(6,‘test’,12,3);
rollback;
begin;
insert into t values(6,‘test’,12,3);
OK
begin;
insert into t values(6,‘test’,12,3);
ERROR

死锁成因
事务t1成功插入记录,并获得索引id=6上的排他记录锁(lock_x)
紧接着事务t2、t3也开始插入记录,请求排他插入意向锁(lock_insert_intention);但由于发生重复唯一键冲突,各自请求的排他记录锁(lock_x)转成共享记录锁(lock_s)

t1回滚释放索引id=6上的排他记录锁(lock_x),t2和t3都要请求索引id=6上的排他记录锁(lock_x)。
由于x锁和s锁互斥,t2和t3都等待对方释放s锁。
于是,死锁便产生了。

如果此场景下,只有两个事务t1与t2或者t1与t3,则不会引发如上死锁情况发生。

gap与insert intention冲突引发的死锁

drop table if exists t;
create table t(a int(11) not null, b int(11) default null,primary key(a),key idx_b(b))engine=innodb default charset=utf8;
insert into t(a,b) values(1,2),(2,3),(3,4),(11,55);
select * from t;

t1t2
begin;
select * from t where b=6 for update;
insert into t values(4,5);
commit;
begin;
select * from t where b=8 for update;
insert into t values(4,5);
commit;

死锁成因
事务t1执行查询语句,在索引b=6上加排他next-key锁(lock_x),会锁住idx_b索引范围(4,22)。
事务t2执行查询语句,在索引b=8上加排他next-key锁(lock_x),会锁住idx_b索引范围(4,22)。
由于请求的gap与已持有的gap是兼容的,因此,事务t2在idx_b索引范围(4,22)也能加锁成功。

事务t1执行插入语句,会先加他insert intention锁。由于请求的insert intention锁与已有的gap锁不兼容,则事务t1等待t2释放gap锁。
事务t2执行插入语句,也会等待t1释放gap锁。于是,死锁便产生了。

6、程序应用

这里写图片描述
这里写图片描述

这篇关于mysql锁机制要览+示例讲解的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/419441

相关文章

MySQL的JDBC编程详解

《MySQL的JDBC编程详解》:本文主要介绍MySQL的JDBC编程,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录前言一、前置知识1. 引入依赖2. 认识 url二、JDBC 操作流程1. JDBC 的写操作2. JDBC 的读操作总结前言本文介绍了mysq

java.sql.SQLTransientConnectionException连接超时异常原因及解决方案

《java.sql.SQLTransientConnectionException连接超时异常原因及解决方案》:本文主要介绍java.sql.SQLTransientConnectionExcep... 目录一、引言二、异常信息分析三、可能的原因3.1 连接池配置不合理3.2 数据库负载过高3.3 连接泄漏

Linux下MySQL数据库定时备份脚本与Crontab配置教学

《Linux下MySQL数据库定时备份脚本与Crontab配置教学》在生产环境中,数据库是核心资产之一,定期备份数据库可以有效防止意外数据丢失,本文将分享一份MySQL定时备份脚本,并讲解如何通过cr... 目录备份脚本详解脚本功能说明授权与可执行权限使用 Crontab 定时执行编辑 Crontab添加定

Python中logging模块用法示例总结

《Python中logging模块用法示例总结》在Python中logging模块是一个强大的日志记录工具,它允许用户将程序运行期间产生的日志信息输出到控制台或者写入到文件中,:本文主要介绍Pyt... 目录前言一. 基本使用1. 五种日志等级2.  设置报告等级3. 自定义格式4. C语言风格的格式化方法

Spring 中的切面与事务结合使用完整示例

《Spring中的切面与事务结合使用完整示例》本文给大家介绍Spring中的切面与事务结合使用完整示例,本文通过实例代码给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友参考... 目录 一、前置知识:Spring AOP 与 事务的关系 事务本质上就是一个“切面”二、核心组件三、完

sky-take-out项目中Redis的使用示例详解

《sky-take-out项目中Redis的使用示例详解》SpringCache是Spring的缓存抽象层,通过注解简化缓存管理,支持Redis等提供者,适用于方法结果缓存、更新和删除操作,但无法实现... 目录Spring Cache主要特性核心注解1.@Cacheable2.@CachePut3.@Ca

QT Creator配置Kit的实现示例

《QTCreator配置Kit的实现示例》本文主要介绍了使用Qt5.12.12与VS2022时,因MSVC编译器版本不匹配及WindowsSDK缺失导致配置错误的问题解决,感兴趣的可以了解一下... 目录0、背景:qt5.12.12+vs2022一、症状:二、原因:(可以跳过,直奔后面的解决方法)三、解决方

MySQL中On duplicate key update的实现示例

《MySQL中Onduplicatekeyupdate的实现示例》ONDUPLICATEKEYUPDATE是一种MySQL的语法,它在插入新数据时,如果遇到唯一键冲突,则会执行更新操作,而不是抛... 目录1/ ON DUPLICATE KEY UPDATE的简介2/ ON DUPLICATE KEY UP

Python中Json和其他类型相互转换的实现示例

《Python中Json和其他类型相互转换的实现示例》本文介绍了在Python中使用json模块实现json数据与dict、object之间的高效转换,包括loads(),load(),dumps()... 项目中经常会用到json格式转为object对象、dict字典格式等。在此做个记录,方便后续用到该方

MySQL分库分表的实践示例

《MySQL分库分表的实践示例》MySQL分库分表适用于数据量大或并发压力高的场景,核心技术包括水平/垂直分片和分库,需应对分布式事务、跨库查询等挑战,通过中间件和解决方案实现,最佳实践为合理策略、备... 目录一、分库分表的触发条件1.1 数据量阈值1.2 并发压力二、分库分表的核心技术模块2.1 水平分