2021SC@SDUSC-山东大学软件工程与实践-Senta(八)

2023-11-23 11:59

本文主要是介绍2021SC@SDUSC-山东大学软件工程与实践-Senta(八),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

本期续接2021SC@SDUSC-山东大学软件工程与实践-Senta(七),继续对Metrics
中的glue_eval进行分析。

def matthews_corrcoef(preds, labels):"""matthews_corrcoef"""preds = np.array(preds)labels = np.array(labels)tp = np.sum((labels == 1) & (preds == 1))tn = np.sum((labels == 0) & (preds == 0))fp = np.sum((labels == 0) & (preds == 1))fn = np.sum((labels == 1) & (preds == 0))mcc = ( (tp * tn) - (fp * fn)) / np.sqrt((tp + fp) * (tp + fn) * (tn + fp) * (tn + fn) )return mcc

构建matthews_corrcoef函数进行二分类评估:运用numpy中的array函数创建preds 和 labels两个数组,并计算mcc指标。

MCC是应用在机器学习中,用以测量二分类的分类性能的指标,该指标考虑了真阳性,真阴性,假阳性和假阴性,通常认为该指标是一个比较均衡的指标,即使是在两类别的样本含量差别很大时,也可以应用它。
MCC本质上是一个描述实际分类与预测分类之间的相关系数,它的取值范围为[-1,1],取值为1时表示对受试对象的完美预测,取值为0时表示预测的结果还不如随机预测的结果,-1是指预测分类和实际分类完全不一致。

def f1_score(preds, labels):"""f1_score"""preds = np.array(preds)labels = np.array(labels)tp = np.sum((labels == 1) & (preds == 1))tn = np.sum((labels == 0) & (preds == 0))fp = np.sum((labels == 0) & (preds == 1))fn = np.sum((labels == 1) & (preds == 0))p = tp / (tp + fp)r = tp / (tp + fn)f1 = (2 * p * r) / (p + r + 1e-8)return f1

构建f1_score()函数计算f1指标。 f1: 精确率和召回率的调和平均。

def pearson_and_spearman(preds, labels):"""pearson_and_spearman"""preds = np.array(preds)labels = np.array(labels)pearson_corr = pearsonr(preds, labels)[0]spearman_corr = spearmanr(preds, labels)[0]return {"pearson": pearson_corr,"spearmanr": spearman_corr,"corr": (pearson_corr + spearman_corr) / 2,}

构建pearson_and_spearman函数计算pearson和spearman统计系数

pearson系数用于评估两个连续变量之间的线性关系。
在这里插入图片描述
-1 ≤ p ≤ 1
p接近0代表无相关性
p接近1或-1代表强相关性

spearman系数评估两个连续变量之间的单调关系。在单调关系中,变量趋于一起变化,但不一定以恒定速率变化。
在这里插入图片描述

def acc_and_f1(preds, labels):"""acc_and_f1"""preds = np.array(preds)labels = np.array(labels)acc = simple_accuracy(preds, labels)f1 = f1_score(preds, labels)return {"acc": acc,"f1": f1,"acc_and_f1": (acc + f1) / 2,}

构建acc_and_f1函数求acc与f1的平均值。
ACC = (TP + TN) / (P + N) 即:(真阳性+真阴性) / 总样本数

这篇关于2021SC@SDUSC-山东大学软件工程与实践-Senta(八)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/417787

相关文章

Spring Security简介、使用与最佳实践

《SpringSecurity简介、使用与最佳实践》SpringSecurity是一个能够为基于Spring的企业应用系统提供声明式的安全访问控制解决方案的安全框架,本文给大家介绍SpringSec... 目录一、如何理解 Spring Security?—— 核心思想二、如何在 Java 项目中使用?——

防止Linux rm命令误操作的多场景防护方案与实践

《防止Linuxrm命令误操作的多场景防护方案与实践》在Linux系统中,rm命令是删除文件和目录的高效工具,但一旦误操作,如执行rm-rf/或rm-rf/*,极易导致系统数据灾难,本文针对不同场景... 目录引言理解 rm 命令及误操作风险rm 命令基础常见误操作案例防护方案使用 rm编程 别名及安全删除

C++统计函数执行时间的最佳实践

《C++统计函数执行时间的最佳实践》在软件开发过程中,性能分析是优化程序的重要环节,了解函数的执行时间分布对于识别性能瓶颈至关重要,本文将分享一个C++函数执行时间统计工具,希望对大家有所帮助... 目录前言工具特性核心设计1. 数据结构设计2. 单例模式管理器3. RAII自动计时使用方法基本用法高级用法

PHP应用中处理限流和API节流的最佳实践

《PHP应用中处理限流和API节流的最佳实践》限流和API节流对于确保Web应用程序的可靠性、安全性和可扩展性至关重要,本文将详细介绍PHP应用中处理限流和API节流的最佳实践,下面就来和小编一起学习... 目录限流的重要性在 php 中实施限流的最佳实践使用集中式存储进行状态管理(如 Redis)采用滑动

ShardingProxy读写分离之原理、配置与实践过程

《ShardingProxy读写分离之原理、配置与实践过程》ShardingProxy是ApacheShardingSphere的数据库中间件,通过三层架构实现读写分离,解决高并发场景下数据库性能瓶... 目录一、ShardingProxy技术定位与读写分离核心价值1.1 技术定位1.2 读写分离核心价值二

深入浅出Spring中的@Autowired自动注入的工作原理及实践应用

《深入浅出Spring中的@Autowired自动注入的工作原理及实践应用》在Spring框架的学习旅程中,@Autowired无疑是一个高频出现却又让初学者头疼的注解,它看似简单,却蕴含着Sprin... 目录深入浅出Spring中的@Autowired:自动注入的奥秘什么是依赖注入?@Autowired

MySQL分库分表的实践示例

《MySQL分库分表的实践示例》MySQL分库分表适用于数据量大或并发压力高的场景,核心技术包括水平/垂直分片和分库,需应对分布式事务、跨库查询等挑战,通过中间件和解决方案实现,最佳实践为合理策略、备... 目录一、分库分表的触发条件1.1 数据量阈值1.2 并发压力二、分库分表的核心技术模块2.1 水平分

SpringBoot通过main方法启动web项目实践

《SpringBoot通过main方法启动web项目实践》SpringBoot通过SpringApplication.run()启动Web项目,自动推断应用类型,加载初始化器与监听器,配置Spring... 目录1. 启动入口:SpringApplication.run()2. SpringApplicat

Java整合Protocol Buffers实现高效数据序列化实践

《Java整合ProtocolBuffers实现高效数据序列化实践》ProtocolBuffers是Google开发的一种语言中立、平台中立、可扩展的结构化数据序列化机制,类似于XML但更小、更快... 目录一、Protocol Buffers简介1.1 什么是Protocol Buffers1.2 Pro

linux安装、更新、卸载anaconda实践

《linux安装、更新、卸载anaconda实践》Anaconda是基于conda的科学计算环境,集成1400+包及依赖,安装需下载脚本、接受协议、设置路径、配置环境变量,更新与卸载通过conda命令... 目录随意找一个目录下载安装脚本检查许可证协议,ENTER就可以安装完毕之后激活anaconda安装更