本文主要是介绍注定成为经典:统计学习方法第二版,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!
李航老师的《统计学习方法》可以说是机器学习的入门宝典,许多机器学习培训班、互联网企业的面试、笔试题目,很多都参考这本书。2019年5月1日,《统计学习方法第二版》出版了!本文对新书做下简单介绍。
《统计学习方法》第一版于 2012年出版,讲述了统计机器学习方法,主要是一些常用的监督学习方法。第二版增加了一些常用的无监督学习方法,由此本书涵盖了传统统计机器学习方法的主要内容。
我们对《统计学习方法》两个版本进行了比较:
第一版课程目录:
第1章 统计学习方法概论
第2章 感知机
第3章 k近邻法
第4章 朴素贝叶斯
第5章 决策树
第6章 逻辑斯谛回归
第7章 支持向量机
第8章 提升方法
第9章 EM算法及其推广
第10章 隐马尔可夫模型
第11章 条件随机场
第12章 统计学习方法总结
第二版课程目录:
第1篇 监督掌习
第1章统计学习及监督学习概论
第2章感知机
第3章k近邻法
第4章朴素贝叶斯法
第5章决策树
第6章逻辑斯谛回归与优选熵模型
第7章支持向量机
第8章提升方法
第9章EM算法及其推广
第10章隐马尔可夫模型
第11章条件随机场
第12章监督学习方法总结
第2篇无监督学习
第13章无监督学习概论
第14章聚类方法
第15章奇异值分解
第16章主成分分析
第17章潜在语义分析
第18章概率潜在语义分析
第19章马尔可夫链蒙特卡罗法
第20章 潜在狄利克雷分配
第21章 PageRank算法
第22章 无监督学习方法总结
附录A 梯度下降法
附录B 牛顿法和拟牛顿法
附录C 拉格朗日对偶性
附录D 矩阵的基本子空间
附录E KL散度的定义和狄利克雷分布的性质
我们可以看到:《统计学习方法(第2版)》分为监督学习和无监督学习两篇,全面系统地介绍了统计学习的主要方法。包括感知机、k近邻法、朴素贝叶斯法、决策树、逻辑斯谛回归与大熵模型、支持向量机、提升方法、EM算法、隐马尔可夫模型和条件随机场,以及聚类方法、奇异值分解、主成分分析、潜在语义分析、概率潜在语义分析、马尔可夫链蒙特卡罗法、潜在狄利克雷分配和PageRank算法等。
《统计学习方法(第2版)》比第一版更全面,而且价格也不高(原价98元,京东8.8折)。这本书是统计机器学习及相关课程的教学参考书,适用于高等院校文本数据挖掘、信息检索及自然语言处理等专业的大学生、研究生,也可供计算机应用等专业的研发人员参考。
我以前花了大量时间翻译吴恩达机器学习视频和写笔记,有一个重要原因是因为我觉得那个教程会成为经典,事实证明如此。
而这次,我极力推荐注定成为经典的《统计学习方法(第2版)》
购买链接
可以到京东购买(点击下面的小程序购买)
请关注和分享↓↓↓
本站的知识星球(黄博的机器学习圈子)ID:92416895
目前在机器学习方向的知识星球排名第一
往期精彩回顾
良心推荐:机器学习入门资料汇总及学习建议(2018版)
黄海广博士的github镜像下载(机器学习及深度学习资源)
吴恩达老师的机器学习和深度学习课程笔记打印版
机器学习小抄-(像背托福单词一样理解机器学习)
首发:深度学习入门宝典-《python深度学习》原文代码中文注释版及电子书
机器学习的数学基础
机器学习必备宝典-《统计学习方法》的python代码实现、电子书及课件
吐血推荐收藏的学位论文排版教程(完整版)
Python环境的安装(Anaconda+Jupyter notebook+Pycharm)
Python代码写得丑怎么办?推荐几个神器拯救你
重磅 | 完备的 AI 学习路线,最详细的资源整理!
这篇关于注定成为经典:统计学习方法第二版的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!