第三节-Android10.0 Binder通信原理(三)-ServiceManager篇

2023-11-23 04:52

本文主要是介绍第三节-Android10.0 Binder通信原理(三)-ServiceManager篇,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

1、概述

        在Android中,系统提供的服务被包装成一个个系统级service,这些service往往会在设备启动之时添加进Android系统,当某个应用想要调用系统某个服务的功能时,往往是向系统发出请求,调用该服务的外部接口。在上一节我们了解到,这种外部接口,我们通常称之为代理接口,也就是我们要拿到目标服务对应的代理对象。
    //TODO

    在Android8.0后,谷歌引入Treble机制,binder机制增加了hwbinder和vndbinder,其中vndbinder的守护进程为vndservicemanager。
    vndservicemanager和service共用同一份代码,只是传入的参数和宏控制的流程有部分差异。
    vndservicemanager会传入参数“/dev/vndbinder”,servicemanager使用默认的“/dev/binder”。
    servicemanager主要做了以下几件事:
    1、打开binder驱动,申请了128k的内存空间
    2、然后调用binder_become_context_manager()让自己成为整个系统中唯一的上下文管理器,其实也就是service管理器
    3、调用binder_loop()进入无限循环,不断监听并解析binder驱动发来的命令


2、Binder架构

//TODO

3、servicemanager的启动

//TODO

4、service_manager调用栈:

//TODO

5、源码分析

    5.1 主程序启动main()

         //TODO

    5.2 binder_open()

        servicemanager启动后,先通过binder_open()来打开“/dev/binder”,代码如下:
        

binder_open()的工作也比较简单,分为以下几步:

1、通过系统调用open()来打开“/dev/binder”,获得一个句柄信息,在Binder驱动重对应的是函数binder_open()

2、通过ioctl获取binder的版本信息,比较binder协议版本是否相同,不同则跳出,在Binder驱动重对应的是函数binder_ioctl()

3、通过mmap内存映射128k的内存空间,即把binder驱动文件的128K字节映射到了内存空间,这128K内存空间的servicemanager使用,在Binder驱动重对应的是函数binder_mmap()。

其他的binder服务进程会映射BINDER_VM_SIZE((1*1024*1024)-sysconf(SC_PAGE_SIZE)*2)的内存空间,SC_PAGE_SIZE表示一个page页的大小,通常情况下为4K,即(1M-4K*2)=(1M-7K)

这个page的大小,不同厂家有时候也会调整大小,一般有1M,64K,4K,1KB,通常为4K。

ServiceManager进程mmap的内存大小可以通过adb shell命令得出:

其中0x7457b61000 -0x745d41000=0x20000,转成10进制,即为128K

ARM32内存映射:

虚拟空间的低3GB部分从0-0XBFFFFFFF的虚拟线性地址,用户态和内核态都可以寻址,这部分也是每个进程的独立空间。

虚拟空间的高1G部分从0XC00000000到0XFFFFFFFF的虚拟地址,只有内核态的进程才能访问,这种限制由页目录和页眉描述符的权限标示位决定,通过MML启动控制

ARM64内存映射:

默认情况下,32位系统默认只能支持4G的内存,在打开PAE后,最大可以扩展到64G的内存,随着物理硬件的不断升级,现在的内存越来越大,因此基本上都切换到了64位系统。

理论上讲,64位的地址总线可以支持高达16EB(2^64)的内存。

2^64次方太大了,Linux内核只采用了64bits的一部分(开启CONFIG_ARM64_64K_PAGES时使用42bits,页大小是4K时使用39bits),该文假设使用的页大小是4K(VA_BITS=39)

ARM64有足够的虚拟地址,用户空间和内核空间可以有各自的2^39=512GB的虚拟地址。

需要注意到,32位应用仍然拥有512GB的内核虚拟地址空间,并且不与内核共享自己的4GB空间,但在ARM32上,32位应用只有3GB的地址空间。

ARM32和ARM64内存地址比较:


    5.3 binder_become_context_manager()

binder_become_context_manager()的作用是让servicemanager成为整个系统中唯一的上下文管理器,其实也就是service管理器,这样我们就可以把ServiceManager称之为守护进程。

对应的binder驱动中操作如下:

从用户空间拷贝ioctl的参数,调用binder_ioctl_set_ctx_mgr()进行设置

BINDER_SET_CONTEXT_MGR_EXT带参数,BINDER_SET_CONTEXT_MGR不带参数

binder_ioctl_set_ctx_mgr()的流程也比较简单

1、先检查当前进程是否具有注册Context Manager的SEAndroid安全权限

2、如果具有SELinux权限,会为整个系统的上下管理器专门生成一个binder_node节点,便该节点的强弱应用加1

3、新创建的binder_node节点,记入context->binder_context_mgr_node,即ServiceManager进程的context binder节点,使之成为serviceManager的binder管理实体


    5.4 binder_loop()

        下一步进行守护进程的循环处理,binder_loop()会先向binder驱动发出了BC_ENTER_LOOPER命令,告诉binder驱动“本线程要进入循环状态了”,接着进入一个for循环不断调用ioctl()读取发来的数据,接着解析这些数据

其中最重要的一个结构体是binder_write_read,它用来记录Binder buffer中读和写的数据信息结构体如下:

    5.5 binder_parse()

        在binder_loop()进入for循环之后,核心处理流程就是ioctl和binder_parse(),即不停的从Binder驱动接收读写数据,进行binder解析后,进行处理。

在binder_loop()中声明了一个128字节的栈内存-readbuf,用BINDER_WRITE_READ命令从驱动读取一些内容,并传入binder_parse(),binder_parse()根据binder驱动传来的“BR_XXX”协议码,进行相关的逻辑处理,最重要的有三个“BR_XXX”协议:

BR_TRANSACTION:事务处理,解析binder_transaction_data的数据,调用回调函数svcmgr_handler()进行服务的注册,获取等操作

BR_REPLY:消息回复

BR_DEAD_BINDER:死亡通知

只要binder_parse()解析正常,binder_loop()就会一直执行下去,ServiceManager进程不退出。

binder_parse()解析binder驱动传来的readbuf的内存,readbuf拥有128字节的栈内存,每次可以只处理一个cmd,也可以有多个cmd,所以存在一个while循环,可以同时解析多个cmd,多个cmd的结构体如下图所示:

        5.5.1 BR_XXX 协议码分析

        BR_XXX码,也称为Binder响应码,这里介绍了ServiceManager处理的一些响应码的作用:

        5.5.2 BR_TRANSACTION解析

        我们这里单独分析下BR_TRANSACTION的流程,这也是我们常用的一个流程,这是Binder驱动向Server端发送请求数据。

从readbuf中解析出binder_transaction_data的数据,最后对接收和发送数据进行了封装,传递给svcmgr_handler()做详细处理

从上main的逻辑看,我们重点关注的是binder_transaction_data这个结构,binder_transaction_data说明了transaction到底在传输什么语义,而语义码就记录在其code成员中,不同语义码需要携带的数据也是不同的,这些数据由data指定。

结构体说明如下:

从上面binder_transaction_data的结构可以看出,data可存入的数据很少,主要采用了数据其实地址和数据偏移量,根据代码上下文可知,调用了bio_init_from_txn(),从txn.transaction_data解析出binder_io的信息,存入msg

        5.5.2.1 bio_init_from_txn()

bio_init_from_txn()的作用就是把binder_transaction_data的“数据起始地址”,“偏移量”,“data数据的总大小”和“偏移数组中可用的条目”:

binder_transaction_data和binder_io的关联

初始化完binder_io的replay,并把transaction_data转换成了binder_io的msg后,调用回调函数svcmgr_handler()进行最终逻辑处理

    5.6 svcmgr_handler()

        在BR_TRANSACTION的命令解析后,就把binder_transaction_data_secctx的数据传给回调函数svcmgr_handler()进行处理。

根据不同的传输语义码(txn->code)来进行相应的操作:查询服务,注册服务,以及列举所服务

源码如下:

    5.7 ServiceManager是如何管理service信息的?

        //TODO

    5.8 注册服务

        根据传入的code:SVC_MGR_ADD_SERVICE得知,本次binder流程想要进行服务注册。

步骤:

从binder_io msg中获取服务名称和长度

从binder_io msg中获取handle

检查该服务是否有注册的selinx权限

查询服务列表svclist是否存在该handle,如果有handle,就更新该服务的handle信息,通过这个handle我们最终就能找到远端的service实体

如果svclist不存在该服务,申请一个svcinfo的空间,把服务名,长度,handle等信息存入其中

把svcinfo进入svclist的链表中

再以BC_ACQUIRE命令,handle为目标的信息,通过ioctl发送给binder驱动

最后以BC_REQEST_DEATH_NOTIFICATION命令的信息,通过ioctl发送给binder驱动,主要用于清理内存等收尾工作        

    5.9 查找服务

        //TODO

6、总结

        //TODO

这篇关于第三节-Android10.0 Binder通信原理(三)-ServiceManager篇的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/415486

相关文章

Spring Boot循环依赖原理、解决方案与最佳实践(全解析)

《SpringBoot循环依赖原理、解决方案与最佳实践(全解析)》循环依赖指两个或多个Bean相互直接或间接引用,形成闭环依赖关系,:本文主要介绍SpringBoot循环依赖原理、解决方案与最... 目录一、循环依赖的本质与危害1.1 什么是循环依赖?1.2 核心危害二、Spring的三级缓存机制2.1 三

C#中async await异步关键字用法和异步的底层原理全解析

《C#中asyncawait异步关键字用法和异步的底层原理全解析》:本文主要介绍C#中asyncawait异步关键字用法和异步的底层原理全解析,本文给大家介绍的非常详细,对大家的学习或工作具有一... 目录C#异步编程一、异步编程基础二、异步方法的工作原理三、代码示例四、编译后的底层实现五、总结C#异步编程

Go 语言中的select语句详解及工作原理

《Go语言中的select语句详解及工作原理》在Go语言中,select语句是用于处理多个通道(channel)操作的一种控制结构,它类似于switch语句,本文给大家介绍Go语言中的select语... 目录Go 语言中的 select 是做什么的基本功能语法工作原理示例示例 1:监听多个通道示例 2:带

鸿蒙中@State的原理使用详解(HarmonyOS 5)

《鸿蒙中@State的原理使用详解(HarmonyOS5)》@State是HarmonyOSArkTS框架中用于管理组件状态的核心装饰器,其核心作用是实现数据驱动UI的响应式编程模式,本文给大家介绍... 目录一、@State在鸿蒙中是做什么的?二、@Spythontate的基本原理1. 依赖关系的收集2.

Java编译生成多个.class文件的原理和作用

《Java编译生成多个.class文件的原理和作用》作为一名经验丰富的开发者,在Java项目中执行编译后,可能会发现一个.java源文件有时会产生多个.class文件,从技术实现层面详细剖析这一现象... 目录一、内部类机制与.class文件生成成员内部类(常规内部类)局部内部类(方法内部类)匿名内部类二、

Python中随机休眠技术原理与应用详解

《Python中随机休眠技术原理与应用详解》在编程中,让程序暂停执行特定时间是常见需求,当需要引入不确定性时,随机休眠就成为关键技巧,下面我们就来看看Python中随机休眠技术的具体实现与应用吧... 目录引言一、实现原理与基础方法1.1 核心函数解析1.2 基础实现模板1.3 整数版实现二、典型应用场景2

Java的IO模型、Netty原理解析

《Java的IO模型、Netty原理解析》Java的I/O是以流的方式进行数据输入输出的,Java的类库涉及很多领域的IO内容:标准的输入输出,文件的操作、网络上的数据传输流、字符串流、对象流等,这篇... 目录1.什么是IO2.同步与异步、阻塞与非阻塞3.三种IO模型BIO(blocking I/O)NI

JAVA封装多线程实现的方式及原理

《JAVA封装多线程实现的方式及原理》:本文主要介绍Java中封装多线程的原理和常见方式,通过封装可以简化多线程的使用,提高安全性,并增强代码的可维护性和可扩展性,需要的朋友可以参考下... 目录前言一、封装的目标二、常见的封装方式及原理总结前言在 Java 中,封装多线程的原理主要围绕着将多线程相关的操

kotlin中的模块化结构组件及工作原理

《kotlin中的模块化结构组件及工作原理》本文介绍了Kotlin中模块化结构组件,包括ViewModel、LiveData、Room和Navigation的工作原理和基础使用,本文通过实例代码给大家... 目录ViewModel 工作原理LiveData 工作原理Room 工作原理Navigation 工

Java的volatile和sychronized底层实现原理解析

《Java的volatile和sychronized底层实现原理解析》文章详细介绍了Java中的synchronized和volatile关键字的底层实现原理,包括字节码层面、JVM层面的实现细节,以... 目录1. 概览2. Synchronized2.1 字节码层面2.2 JVM层面2.2.1 ente