【H.264/AVC视频编解码技术详解】十八:算术编码的基本原理与实现

本文主要是介绍【H.264/AVC视频编解码技术详解】十八:算术编码的基本原理与实现,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

《H.264/AVC视频编解码技术详解》视频教程已经在“CSDN学院”上线,视频中详述了H.264的背景、标准协议和实现,并通过一个实战工程的形式对H.264的标准进行解析和实现,欢迎观看!

“纸上得来终觉浅,绝知此事要躬行”,只有自己按照标准文档以代码的形式操作一遍,才能对视频压缩编码标准的思想和方法有足够深刻的理解和体会!

链接地址:H.264/AVC视频编解码技术详解

GitHub代码地址:点击这里

一、H.264的算术编码

在前述的几章节的博文/视频中,我们已经了解到熵编码是利用信息的统计冗余进行数据压缩的无损编码方法,并且已经讨论过了熵编码的基本原理、H.264中使用的语法元素解析算法“指数哥伦布编码”的算法与实践:

  • 【H.264/AVC视频编解码技术详解】七、 熵编码算法(1):基础知识
  • 【H.264/AVC视频编解码技术详解】八、 熵编码算法(2):H.264中的熵编码基本方法、指数哥伦布编码

并且在后续的内容中,讨论了在H.264中非常重要的一种熵编码方法,即上下文自适应的变长编码(CAVLC):

  • 【H.264/AVC视频编解码技术详解】十三、熵编码算法(3):CAVLC原理
  • 【H.264/AVC视频编解码技术详解】十三、熵编码算法(4):H.264使用CAVLC解析宏块的残差数据

以上的内容在H.264的baseline profile中具有广泛应用。然而在实际应用场景中更为流行的通常是main profile,在main profile中为了进一步提升压缩比率,采用的熵编码方法不是CAVLC,而是压缩效率更高的CABAC。

CABAC的全称为上下文自适应的二进制算术编码(Context-Adaptive Binary Arithmetic Coding, CABAC),是一种经过特殊设计的算术编码,其具体步骤主要有:

  1. 设定编码上下文;
  2. 语法元素的二值化;
  3. 算术编码;

二、算术编码的基本概念

算术编码属于熵编码的一种重要的类型,其作用同变长编码等熵编码方法类似,用于压缩输入数据中的统计冗余,并且使用算术编码的压缩同样是无损压缩。

在本系列第1篇中讨论了典型的变长编码方法——哈夫曼编码。包括哈夫曼编码在内的变长编码具有一个共同特点,就是针对每一个码元不同的概率,分配每个码元对应的码字。通常针对概率更高的码元,分配长度更短的码字;针对概率较低的码元,分配长度较长的码字。通过这种不同长度码字的分配使得整体输入信息的平均码字长度小于定长编码,达到数据压缩的效果。

另一方面,由于采用这种变长度的编码方法,变长编码存在一项难以突破的性能瓶颈:即使是某一个输入信源的概率再高,也至少需要1个bit的码字。这种特性限制了编码性能进一步向信源熵逼近,也导致了无法进一步提升整体的压缩性能。

算术编码的引入可以有效解决这个问题。算术编码的思想同变长编码完全不同,算术编码无法针对每一个输入码元准确细分出对应的码字。另外,变长编码可以针对短输入信息进行编码,而算术编码对类似一两个码元的输入信息通常没有任何意义,因为生成的码流长度通常更长。

在算术编码执行的过程中,始终需要两个区间来计算,这两个区间即信源的概率区间和码流的编码区间。

三、概率区间与编码区间

信源的概率区间用于表示输入信源的码元之间的概率关系。假设输入的信源为二进制信源,只存在0和1两个元素,那么元素0和1的概率之和为100%。如果0和1的概率比为7:3,那么概率区间可以用下图表示:

在这里插入图片描述

与概率区间按照码元的概率分割不同,编码区间为了标记输出码流,将自身区间递归二等分,分割点的左右分别表示一个码元0和1。每一次分割都增加一个bit输出。编码区间可以用下图表示:
在这里插入图片描述

四、一个简单的算术编码执行过程

在一次算术编码的执行前,为简便起见,首先假设输入的信源为0/1的二进制信源,0和1的概率比为7:3。即二者的概率为:

p(0) = 0.7;
p(1) = 0.3;

假设输入的待编码信息为[0, 0, 1],在编码每一个符号时,都需要对概率区间进行分割,并通过与编码区间进行比较,判断是否输出码流的bit位,以及更新编码下一个符号的上下文。

在第一次进行分割之后,概率区间和编码区间的关系如下图所示:
在这里插入图片描述

第一个字符的概率区间分割之后,不满足输出码流的条件,因此结束这个字符的编码,准备开始编码下一个字符。

第二个字符依然为0,此时概率区间和编码区间的关系为:
在这里插入图片描述

此时概率区间已经完全处于编码区间的下半区,因此应输出一个bit-0。而后,编码区间的下半区间扩展2倍到原有的完整编码区间继续进行下一个编码。该过程由下图所示:
在这里插入图片描述

我们设定的最后一个待编码符号为1,因此最后一次分割概率区间,选取上30%作为结果。此时的概率区间分割结果如下图所示:
在这里插入图片描述

由图中可看出,概率区间已经完全处于编码区间的上半区,因此需要输出一个bit-1,并循环进行如下操作,直到概率区间长度大于编码区间总长的一半:

  1. 检测概率区间的长度和位置;
  2. 根据概率区间特性,输出0或1,或记录待输出位;
  3. 概率区间随编码区间归一化。

当循环结束后,对每一个码元编码的区间分割过程结束。

对码元的区间分割结束后,整个编码过程并未完全结束,还需要一个重要的收尾过程,即处理最终的概率区间。最终的概率区间的处理方法为:

  1. 检查最终概率区间下限的位置;
  2. 若该下限位置小于整体编码区间的1/4分割点,输出bit-0,否则输出bit-1。

还需要注意的是,我们的算术编码引擎中包含了一个待输出编码位,表示此时应有一个输出bit但由于概率区间位置跨越了编码区间的中点而没有输出,需要留待以后输出。因此无论在分割中或者收尾时输出某个bit时,应同时输出数目为待输出编码位个的相反bit。

例如,当前待输出编码位为3个,某时刻应输出1,则此时应输出1000;又例如,待输出编码位为2,某时刻应输出0,则此时应输出011。

对于程序实现,请到Github代码库下载查看;CSDN学院中的视频更可以详细解释每一步的细节,以及多个案例的运行,并通过程序运行与图示解释来揭秘算术编码的本质含义,欢迎参加。

这篇关于【H.264/AVC视频编解码技术详解】十八:算术编码的基本原理与实现的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/415377

相关文章

Spring Security基于数据库验证流程详解

Spring Security 校验流程图 相关解释说明(认真看哦) AbstractAuthenticationProcessingFilter 抽象类 /*** 调用 #requiresAuthentication(HttpServletRequest, HttpServletResponse) 决定是否需要进行验证操作。* 如果需要验证,则会调用 #attemptAuthentica

流媒体平台/视频监控/安防视频汇聚EasyCVR播放暂停后视频画面黑屏是什么原因?

视频智能分析/视频监控/安防监控综合管理系统EasyCVR视频汇聚融合平台,是TSINGSEE青犀视频垂直深耕音视频流媒体技术、AI智能技术领域的杰出成果。该平台以其强大的视频处理、汇聚与融合能力,在构建全栈视频监控系统中展现出了独特的优势。视频监控管理系统EasyCVR平台内置了强大的视频解码、转码、压缩等技术,能够处理多种视频流格式,并以多种格式(RTMP、RTSP、HTTP-FLV、WebS

hdu1043(八数码问题,广搜 + hash(实现状态压缩) )

利用康拓展开将一个排列映射成一个自然数,然后就变成了普通的广搜题。 #include<iostream>#include<algorithm>#include<string>#include<stack>#include<queue>#include<map>#include<stdio.h>#include<stdlib.h>#include<ctype.h>#inclu

综合安防管理平台LntonAIServer视频监控汇聚抖动检测算法优势

LntonAIServer视频质量诊断功能中的抖动检测是一个专门针对视频稳定性进行分析的功能。抖动通常是指视频帧之间的不必要运动,这种运动可能是由于摄像机的移动、传输中的错误或编解码问题导致的。抖动检测对于确保视频内容的平滑性和观看体验至关重要。 优势 1. 提高图像质量 - 清晰度提升:减少抖动,提高图像的清晰度和细节表现力,使得监控画面更加真实可信。 - 细节增强:在低光条件下,抖

OpenHarmony鸿蒙开发( Beta5.0)无感配网详解

1、简介 无感配网是指在设备联网过程中无需输入热点相关账号信息,即可快速实现设备配网,是一种兼顾高效性、可靠性和安全性的配网方式。 2、配网原理 2.1 通信原理 手机和智能设备之间的信息传递,利用特有的NAN协议实现。利用手机和智能设备之间的WiFi 感知订阅、发布能力,实现了数字管家应用和设备之间的发现。在完成设备间的认证和响应后,即可发送相关配网数据。同时还支持与常规Sof

【专题】2024飞行汽车技术全景报告合集PDF分享(附原数据表)

原文链接: https://tecdat.cn/?p=37628 6月16日,小鹏汇天旅航者X2在北京大兴国际机场临空经济区完成首飞,这也是小鹏汇天的产品在京津冀地区进行的首次飞行。小鹏汇天方面还表示,公司准备量产,并计划今年四季度开启预售小鹏汇天分体式飞行汽车,探索分体式飞行汽车城际通勤。阅读原文,获取专题报告合集全文,解锁文末271份飞行汽车相关行业研究报告。 据悉,业内人士对飞行汽车行业

【C++】_list常用方法解析及模拟实现

相信自己的力量,只要对自己始终保持信心,尽自己最大努力去完成任何事,就算事情最终结果是失败了,努力了也不留遗憾。💓💓💓 目录   ✨说在前面 🍋知识点一:什么是list? •🌰1.list的定义 •🌰2.list的基本特性 •🌰3.常用接口介绍 🍋知识点二:list常用接口 •🌰1.默认成员函数 🔥构造函数(⭐) 🔥析构函数 •🌰2.list对象

【Prometheus】PromQL向量匹配实现不同标签的向量数据进行运算

✨✨ 欢迎大家来到景天科技苑✨✨ 🎈🎈 养成好习惯,先赞后看哦~🎈🎈 🏆 作者简介:景天科技苑 🏆《头衔》:大厂架构师,华为云开发者社区专家博主,阿里云开发者社区专家博主,CSDN全栈领域优质创作者,掘金优秀博主,51CTO博客专家等。 🏆《博客》:Python全栈,前后端开发,小程序开发,人工智能,js逆向,App逆向,网络系统安全,数据分析,Django,fastapi

让树莓派智能语音助手实现定时提醒功能

最初的时候是想直接在rasa 的chatbot上实现,因为rasa本身是带有remindschedule模块的。不过经过一番折腾后,忽然发现,chatbot上实现的定时,语音助手不一定会有响应。因为,我目前语音助手的代码设置了长时间无应答会结束对话,这样一来,chatbot定时提醒的触发就不会被语音助手获悉。那怎么让语音助手也具有定时提醒功能呢? 我最后选择的方法是用threading.Time

Android实现任意版本设置默认的锁屏壁纸和桌面壁纸(两张壁纸可不一致)

客户有些需求需要设置默认壁纸和锁屏壁纸  在默认情况下 这两个壁纸是相同的  如果需要默认的锁屏壁纸和桌面壁纸不一样 需要额外修改 Android13实现 替换默认桌面壁纸: 将图片文件替换frameworks/base/core/res/res/drawable-nodpi/default_wallpaper.*  (注意不能是bmp格式) 替换默认锁屏壁纸: 将图片资源放入vendo