C语言CRC-16 DNP格式校验函数

2023-11-23 00:11

本文主要是介绍C语言CRC-16 DNP格式校验函数,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

C语言CRC-16 DNP格式校验函数

CRC-16校验产生2个字节长度的数据校验码,通过计算得到的校验码和获得的校验码比较,用于验证获得的数据的正确性。基本的CRC-16校验算法实现,参考: C语言标准CRC-16校验函数。

不同应用规范通过对输入数据前处理和输出数据后处理的方式不同,又产生了不同的应用规范校验函数,这里介绍DNP格式的CRC-16校验函数。DNP格式对输入数据,按照单个字节进行位反序。对于输出的校验码,进行整体位反序, 然后异或0xFFFF。

生成多项式为x^16 + x^13 + x^12 + x^11 + x^10 + x^8 + x^6 + x^5 + x^2 + 1

正向算法

正向算法是符合标准CRC-16的计算理论,从左向右计算,也即计算过程中移位时,向左移出。几种正向算法的实现如下:

CRC-16 DNP格式校验函数一(8位输入数据格式,64位装载计算):

#include <stdio.h>
#include <stdlib.h>
uint16_t PY_CRC_16_DNP(uint8_t *di, uint32_t len)
{uint32_t crc_poly = 0x00013D65;  //x^16 + x^13 + x^12 + x^11 + x^10 + x^8 + x^6 + x^5 + x^2 + 1 total 17 effective bits. Computed total data shall be compensated 16-bit '0' before CRC computing.uint8_t *datain;uint64_t cdata = 0; //Computed total datauint32_t data_t = 0; //Process data of CRC computinguint16_t index_t = 63;  ///bit shifting index for initial '1' searchinguint16_t index = 63;    //bit shifting index for CRC computinguint8_t rec = 0; //bit number needed to be compensated for next CRC computinguint32_t cn=(len+2)/6;uint32_t cr=(len+2)%6;uint32_t j;datain = malloc(len+2);for(j=0;j<len;j++){datain[j] = 0;for(uint8_t m=0; m<=7; m++){datain[j] |= ( ( di[j]>>(7-m) ) & 1 ) << m;}}datain[len] = 0; datain[len+1] = 0;//Compensate 16-bit '0' for input dataif(len<=6)   //Mount data for only one segment{for(j=0;j<=(len+1);j++){cdata = (cdata<<8);cdata = cdata|datain[j];}cn = 1;}else{if(cr==0){cr = 6;}else if(cr==1){cr = 7;}else if(cr==2){cr = 8;}else{cn++;}for(j=0;j<cr;j++){cdata = (cdata<<8);cdata = cdata|datain[j];}}do{cn--;while(index_t>0){if( (cdata>>index_t)&1 ){index = index_t;index_t = 0;data_t |= (cdata>>(index-16));{data_t = data_t ^ crc_poly;}while((index!=0x5555)&&(index!=0xaaaa)){for(uint8_t n=1;n<17;n++){if ((data_t>>(16-n))&1) {rec = n;break;}if (n==16) rec=17;}if((index-16)<rec){data_t = data_t<<(index-16);data_t |=  (uint32_t)((cdata<<(64-(index-16)))>>(64-(index-16)));index = 0x5555;}else{for(uint8_t i=1;i<=rec;i++){data_t = (data_t<<1)|((cdata>>(index-16-i))&1) ;}if(rec!= 17){data_t = data_t ^ crc_poly;index -= rec;}else{data_t = 0;index_t = index-16-1;index = 0xaaaa;}}}if(index==0x5555) break;}else{index_t--;if(index_t<16) break;}}if(cn>0) //next segment{cdata = data_t&0x00ffff;for(uint8_t k=0;k<6;k++){cdata = (cdata<<8);cdata = cdata|datain[j++];}data_t = 0;index_t = 63;  ///bit shifting index for initial '1' searchingindex = 63;    //bit shifting index for CRC computingrec = 0; //bit number needed to be compensated for next CRC computing}}while(cn>0);free(datain);uint16_t i_data_t = 0;for(uint8_t n=0; n<=15; n++){i_data_t |=  ( ( data_t>>(15-n) ) & 1 ) << n;}return i_data_t ^ 0xFFFF;
}

CRC-16 DNP格式校验函数二(8位输入数据格式):

uint16_t PY_CRC_16_S_DNP(uint8_t *di, uint32_t len)
{uint16_t crc_poly = 0x3D65;  //x^16 + x^13 + x^12 + x^11 + x^10 + x^8 + x^6 + x^5 + x^2 + 1 total 16 effective bits without X^16. Computed total data shall be compensated 16-bit '0' before CRC computing.uint32_t clen = len+2;uint8_t cdata[clen] ;for(uint32_t j=0;j<len;j++){cdata[j] = 0;for(uint8_t m=0; m<=7; m++){cdata[j] |= ( ( di[j]>>(7-m) ) & 1 ) << m;}}cdata[len]=0; cdata[len+1]=0;uint16_t data_t = (((uint16_t)cdata[0]) << 8) + cdata[1]; //CRC registerfor (uint32_t i = 2; i < clen; i++){for (uint8_t j = 0; j <= 7; j++){if(data_t&0x8000)data_t = ( (data_t<<1) | ( (cdata[i]>>(7-j))&0x01) ) ^ crc_poly;elsedata_t = ( (data_t<<1) | ( (cdata[i]>>(7-j))&0x01) ) ;}}uint16_t i_data_t = 0;for(uint8_t n=0; n<=15; n++){i_data_t |=  ( ( data_t>>(15-n) ) & 1 ) << n;}return i_data_t ^ 0xFFFF;
}

CRC-16 DNP格式校验函数三(16位输入数据格式):

uint16_t PY_CRC_16_T16_DNP(uint16_t *di, uint32_t len)
{uint16_t crc_poly = 0x3D65;  //x^16 + x^13 + x^12 + x^11 + x^10 + x^8 + x^6 + x^5 + x^2 + 1 total 16 effective bits without X^16. uint16_t data_t = 0; //CRC registeruint16_t cdata[len];for(uint32_t j=0;j<len;j++){cdata[j] = 0;for(uint8_t m=0; m<=7; m++){cdata[j] |= ( ( ( (di[j]>>8)>>(7-m) ) & 1 ) << m ) | ( ( ( ( (di[j]&0x00ff)>>(7-m) ) & 1 ) << m ) <<8 );}}for(uint32_t i = 0; i < len; i++){data_t ^= cdata[i]; //16-bit datafor (uint8_t j = 0; j < 16; j++){if (data_t & 0x8000)data_t = (data_t << 1) ^ crc_poly;elsedata_t <<= 1;}}uint16_t i_data_t = 0;for(uint8_t n=0; n<=15; n++){i_data_t |=  ( ( data_t>>(15-n) ) & 1 ) << n;}return i_data_t ^ 0xFFFF;
}

CRC-16 DNP格式校验函数四(8位输入数据格式):

uint16_t PY_CRC_16_T8_DNP(uint8_t *di, uint32_t len)
{uint16_t crc_poly = 0x3D65;  //x^16 + x^13 + x^12 + x^11 + x^10 + x^8 + x^6 + x^5 + x^2 + 1 total 16 effective bits without X^16. uint16_t data_t = 0; //CRC registeruint8_t cdata[len];for(uint32_t j=0;j<len;j++){cdata[j] = 0;for(uint8_t m=0; m<=7; m++){cdata[j] |= ( ( di[j]>>(7-m) ) & 1 ) << m;}}for(uint32_t i = 0; i < len; i++){data_t ^= cdata[i]<<8; //8-bit datafor (uint8_t j = 0; j < 8; j++){if (data_t & 0x8000)data_t = (data_t << 1) ^ crc_poly;elsedata_t <<= 1;}}uint16_t i_data_t = 0;for(uint8_t n=0; n<=15; n++){i_data_t |=  ( ( data_t>>(15-n) ) & 1 ) << n;}return i_data_t ^ 0xFFFF;
}

反向算法

反向算法是从由右向左计算,也即计算过程中移位时,向右移出。而计算过程中的输入数据高优先计算位和校验参数的对齐关系不变。因此把一个字节放在CRC计算寄存器的最低字节时,对于DNP格式,最右侧最低位实际上是高优先计算位,而校验参数要相应倒序,从而计算位置对照关系不变。

CRC-16 DNP格式校验函数五(反向算法,8位输入数据格式):

uint16_t PY_CRC_16_T8_DNP_i(uint8_t *di, uint32_t len)
{uint16_t crc_poly = 0xA6BC; //Bit sequence inversion of 0x3D65uint16_t data_t = 0; //CRC registerfor(uint32_t i = 0; i < len; i++){data_t ^= di[i]; //8-bit datafor (uint8_t j = 0; j < 8; j++){if (data_t & 0x0001)data_t = (data_t >> 1) ^ crc_poly;elsedata_t >>= 1;}}return data_t ^ 0xFFFF;
}

算法验证

5种算法结果相同:
在这里插入图片描述

通过在线CRC工具对照验证成功:
在这里插入图片描述

–End–

这篇关于C语言CRC-16 DNP格式校验函数的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/413920

相关文章

C++ Sort函数使用场景分析

《C++Sort函数使用场景分析》sort函数是algorithm库下的一个函数,sort函数是不稳定的,即大小相同的元素在排序后相对顺序可能发生改变,如果某些场景需要保持相同元素间的相对顺序,可使... 目录C++ Sort函数详解一、sort函数调用的两种方式二、sort函数使用场景三、sort函数排序

C语言函数递归实际应用举例详解

《C语言函数递归实际应用举例详解》程序调用自身的编程技巧称为递归,递归做为一种算法在程序设计语言中广泛应用,:本文主要介绍C语言函数递归实际应用举例的相关资料,文中通过代码介绍的非常详细,需要的朋... 目录前言一、递归的概念与思想二、递归的限制条件 三、递归的实际应用举例(一)求 n 的阶乘(二)顺序打印

SpringBoot利用@Validated注解优雅实现参数校验

《SpringBoot利用@Validated注解优雅实现参数校验》在开发Web应用时,用户输入的合法性校验是保障系统稳定性的基础,​SpringBoot的@Validated注解提供了一种更优雅的解... 目录​一、为什么需要参数校验二、Validated 的核心用法​1. 基础校验2. php分组校验3

C/C++错误信息处理的常见方法及函数

《C/C++错误信息处理的常见方法及函数》C/C++是两种广泛使用的编程语言,特别是在系统编程、嵌入式开发以及高性能计算领域,:本文主要介绍C/C++错误信息处理的常见方法及函数,文中通过代码介绍... 目录前言1. errno 和 perror()示例:2. strerror()示例:3. perror(

Python将博客内容html导出为Markdown格式

《Python将博客内容html导出为Markdown格式》Python将博客内容html导出为Markdown格式,通过博客url地址抓取文章,分析并提取出文章标题和内容,将内容构建成html,再转... 目录一、为什么要搞?二、准备如何搞?三、说搞咱就搞!抓取文章提取内容构建html转存markdown

Kotlin 作用域函数apply、let、run、with、also使用指南

《Kotlin作用域函数apply、let、run、with、also使用指南》在Kotlin开发中,作用域函数(ScopeFunctions)是一组能让代码更简洁、更函数式的高阶函数,本文将... 目录一、引言:为什么需要作用域函数?二、作用域函China编程数详解1. apply:对象配置的 “流式构建器”最

Java进行文件格式校验的方案详解

《Java进行文件格式校验的方案详解》这篇文章主要为大家详细介绍了Java中进行文件格式校验的相关方案,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录一、背景异常现象原因排查用户的无心之过二、解决方案Magandroidic Number判断主流检测库对比Tika的使用区分zip

Android Kotlin 高阶函数详解及其在协程中的应用小结

《AndroidKotlin高阶函数详解及其在协程中的应用小结》高阶函数是Kotlin中的一个重要特性,它能够将函数作为一等公民(First-ClassCitizen),使得代码更加简洁、灵活和可... 目录1. 引言2. 什么是高阶函数?3. 高阶函数的基础用法3.1 传递函数作为参数3.2 Lambda

如何自定义Nginx JSON日志格式配置

《如何自定义NginxJSON日志格式配置》Nginx作为最流行的Web服务器之一,其灵活的日志配置能力允许我们根据需求定制日志格式,本文将详细介绍如何配置Nginx以JSON格式记录访问日志,这种... 目录前言为什么选择jsON格式日志?配置步骤详解1. 安装Nginx服务2. 自定义JSON日志格式各

python dict转换成json格式的实现

《pythondict转换成json格式的实现》本文主要介绍了pythondict转换成json格式的实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下... 一开始你变成字典格式data = [ { 'a' : 1, 'b' : 2, 'c编程' : 3,