DPDK使用hugepage原理总结

2023-11-22 20:48

本文主要是介绍DPDK使用hugepage原理总结,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

hugepage原理参考http://blog.chinaunix.net/uid-28541347-id-5783934.html

DPDK版本:17.11.2

hugepage的作用: 
1. 就是减少页的切换,页表项减少,产生缺页中断的次数也减少 
2. 降低TLB的miss次数

1.DPDK使用前准备

  1. DPDK应用使用hugepage前,应保证系统已经配置hugepage
    (配置参考https://blog.csdn.net/shaoyunzhe/article/details/54614077)
  2. 将 hugetlbfs 特殊文件系统挂载到根文件系统的某个目录
    mount -t hugetlbfs hugetlbfs /dev/hugepages (挂载默认的hugeage大小)
    mount -t hugetlbfs none /dev/hugepages_2mb -o pagesize=2MB(挂载2M的)
    1G大页和2M大页必须挂载了才能使用。挂载其中一个,DPDK也能正常运行。

本测试时只设置了1G大页,具体信息如下:

挂载目录:cat /proc/mounts

2.DPDK使用hugepage代码分析

DPDK初始化函数rte_eal_init调用eal_hugepage_info_init初始化hugepage信息,

2.1. eal_hugepage_info_init初始化主要工作:

此函数主要收集可用hugepage信息(有多少页,挂载目录)。

  • 进入”/sys/kernel/mm/hugepages“目录
  • 寻找“hugepages-”开头的目录并获取此目录有后面的数字,就是hugepage大小,比如我系统下:
  • 使用struct hugepage_info 结构体保存hugepage页面大小,挂载目录,可用页数。注意:如果对应大小hugepage没有挂载,此类hugepage则不会被DPDK程序使用
    eg:比如我们没有执行mount -t hugetlbfs none /dev/hugepages_2mb -o pagesize=2MB,只挂载了mount -t hugetlbfs hugetlbfs /dev/hugepages,DPDK只会使用1G hugepage。
    DPDK程序执行时打印“EAL: 2048 hugepages of size 2097152 reserved, but no mounted hugetlbfs found for that size”表明2M的没有挂载。
  • 以下结构体就是保存hugepage信息的,这个信息后面初始化存储有用。
  • struct hugepage_info {uint64_t hugepage_sz;   /**< size of a huge page */const char *hugedir;    /**< dir where hugetlbfs is mounted */uint32_t num_pages[RTE_MAX_NUMA_NODES];/**< number of hugepages of that size on each socket */int lock_descriptor;    /**< file descriptor for hugepage dir */
    };

    本实验最后大页信息是:
    hugepage_sz=1048576(1048576*1024)
    hugedir="/dev/hugepages"
    num_pages[0]=4

int
eal_hugepage_info_init(void)
{const char dirent_start_text[] = "hugepages-";const size_t dirent_start_len = sizeof(dirent_start_text) - 1;unsigned i, num_sizes = 0;DIR *dir;struct dirent *dirent;dir = opendir(sys_dir_path);  //sys_dir_path[] = "/sys/kernel/mm/hugepages"if (dir == NULL) {RTE_LOG(ERR, EAL,"Cannot open directory %s to read system hugepage info\n",sys_dir_path);return -1;}/*遍历/sys/kernel/mm/hugepages目录下以“hugepages-”开头的目录*/for (dirent = readdir(dir); dirent != NULL; dirent = readdir(dir)) {struct hugepage_info *hpi;if (strncmp(dirent->d_name, dirent_start_text,dirent_start_len) != 0)continue;if (num_sizes >= MAX_HUGEPAGE_SIZES)break;/*internal_config为DPDK全局变量*/hpi = &internal_config.hugepage_info[num_sizes];/*保存hugepage的大小,最多保存三种大小,一般也只用到了1G,2M*/hpi->hugepage_sz =rte_str_to_size(&dirent->d_name[dirent_start_len]);/*get_hugepage_dir函数会到/proc/mounts里去寻找对应大小hugepage页挂载的目录 */hpi->hugedir = get_hugepage_dir(hpi->hugepage_sz);/* first, check if we have a mountpoint */if (hpi->hugedir == NULL) {uint32_t num_pages;num_pages = get_num_hugepages(dirent->d_name);if (num_pages > 0)RTE_LOG(NOTICE, EAL,"%" PRIu32 " hugepages of size ""%" PRIu64 " reserved, but no mounted ""hugetlbfs found for that size\n",num_pages, hpi->hugepage_sz);continue;}
......
......
}

2.2.rte_eal_hugepage_init初始化主要工作:

上面只是获取了hugepage信息,后面rte_eal_memory_init函数->rte_eal_hugepage_init->map_all_hugepages初始化每页具体虚拟地址,物理地址,大小等信息。

  • 获取全局变量,存储分配内存相关信息
/* get pointer to global configuration */mcfg = rte_eal_get_configuration()->mem_config;
  • 计算一共有多少页,并分配struct hugepage_file 结构管理所有页(如果设置了1G,2M,16G,nr_hugepages最后等于所有页数的总和,本测试nr_hugepages=4)
/* calculate total number of hugepages available. at this point we haven't* yet started sorting them so they all are on socket 0 */for (i = 0; i < (int) internal_config.num_hugepage_sizes; i++) {/* meanwhile, also initialize used_hp hugepage sizes in used_hp */used_hp[i].hugepage_sz = internal_config.hugepage_info[i].hugepage_sz;nr_hugepages += internal_config.hugepage_info[i].num_pages[0];}/** allocate a memory area for hugepage table.* this isn't shared memory yet. due to the fact that we need some* processing done on these pages, shared memory will be created* at a later stage.*/tmp_hp = malloc(nr_hugepages * sizeof(struct hugepage_file));if (tmp_hp == NULL)goto fail;
  • 第一次调用map_all_hugepages创建内存映射文件。orig参数设置为1,下面解释了设置1或是0的作用
    /** Mmap all hugepages of hugepage table: it first open a file in* hugetlbfs, then mmap() hugepage_sz data in it. If orig is set, the* virtual address is stored in hugepg_tbl[i].orig_va, else it is stored* in hugepg_tbl[i].final_va. The second mapping (when orig is 0) tries to* map contiguous physical blocks in contiguous virtual blocks.*/
    static unsigned
    map_all_hugepages(struct hugepage_file *hugepg_tbl, struct hugepage_info *hpi,uint64_t *essential_memory __rte_unused, int orig)

    eal_get_hugefile_path函数根据页的索引生成文件路径/dev/hugepages/rtemap_x(本测试是0,1,2,3),4个文件。然后调用open,mamp进行映射。然后把得到的虚拟地址存在hugepg_tbl[i].orig_va = virtaddr;
		/* try to create hugepage file */fd = open(hugepg_tbl[i].filepath, O_CREAT | O_RDWR, 0600);if (fd < 0) {RTE_LOG(DEBUG, EAL, "%s(): open failed: %s\n", __func__,strerror(errno));goto out;}/* map the segment, and populate page tables,* the kernel fills this segment with zeros */virtaddr = mmap(vma_addr, hugepage_sz, PROT_READ | PROT_WRITE,MAP_SHARED | MAP_POPULATE, fd, 0);
  • 调用find_physaddrs函数获取每页虚拟地址对应的物理地址
/** For each hugepage in hugepg_tbl, fill the physaddr value. We find* it by browsing the /proc/self/pagemap special file.*/
static int
find_physaddrs(struct hugepage_file *hugepg_tbl, struct hugepage_info *hpi)
{unsigned int i;phys_addr_t addr;for (i = 0; i < hpi->num_pages[0]; i++) {addr = rte_mem_virt2phy(hugepg_tbl[i].orig_va);if (addr == RTE_BAD_PHYS_ADDR)return -1;hugepg_tbl[i].physaddr = addr;}return 0;
}
  • 调用find_numasocket获取每页对应的socket  ID。因为分配页内存时,在NUMA架构中会根据NUMA的内存分配策略决定在哪个NUMA节点分配。
if (find_numasocket(&tmp_hp[hp_offset], hpi) < 0){RTE_LOG(DEBUG, EAL, "Failed to find NUMA socket for %u MB pages\n",(unsigned)(hpi->hugepage_sz / 0x100000));goto fail;}
  • 根据每页的物理地址进行排序,排序的是struct hugepage_file *tmp_hp,tmp_hp存储了所有hugepage信息,是在一开始时初始化的。qsort排序的单位是一个struct hugepage_file结构体大小,排序依据是每页的物理地址大小。
qsort(&tmp_hp[hp_offset], hpi->num_pages[0],sizeof(struct hugepage_file), cmp_physaddr);static int
cmp_physaddr(const void *a, const void *b)
{
#ifndef RTE_ARCH_PPC_64const struct hugepage_file *p1 = a;const struct hugepage_file *p2 = b;
#else/* PowerPC needs memory sorted in reverse order from x86 */const struct hugepage_file *p1 = b;const struct hugepage_file *p2 = a;
#endifif (p1->physaddr < p2->physaddr)return -1;else if (p1->physaddr > p2->physaddr)return 1;elsereturn 0;
}
  • 然后再次调用map_all_hugepages进行第二次映射。orig参数设置为0,这次和第一次调用有所区别。主要是是保证最大物理地址和最大虚拟地址都连续对应,此前已经保证物理地址是从小到大排序好了的。最后将新映射的地址保存到:hugepg_tbl[i].final_va = virtaddr;参考map_all_hugepages函数以下代码
		else if (vma_len == 0) {unsigned j, num_pages;/* reserve a virtual area for next contiguous* physical block: count the number of* contiguous physical pages. */for (j = i+1; j < hpi->num_pages[0] ; j++) {
#ifdef RTE_ARCH_PPC_64/* The physical addresses are sorted in* descending order on PPC64 */if (hugepg_tbl[j].physaddr !=hugepg_tbl[j-1].physaddr - hugepage_sz)break;
#elseif (hugepg_tbl[j].physaddr !=hugepg_tbl[j-1].physaddr + hugepage_sz)break;
#endif}num_pages = j - i;vma_len = num_pages * hugepage_sz;/* get the biggest virtual memory area up to* vma_len. If it fails, vma_addr is NULL, so* let the kernel provide the address. */vma_addr = get_virtual_area(&vma_len, hpi->hugepage_sz);if (vma_addr == NULL)vma_len = hugepage_sz;}
  • 最后调用unmap_all_hugepages_orig取消第一次映射
/* unmap original mappings */if (unmap_all_hugepages_orig(&tmp_hp[hp_offset], hpi) < 0)goto fail;
  • 然后做一些清理工作,创建共享存储,umap不需要的页,最后将页信息保存到全局变量中
if (new_memseg) {j += 1;if (j == RTE_MAX_MEMSEG)break;mcfg->memseg[j].iova = hugepage[i].physaddr;mcfg->memseg[j].addr = hugepage[i].final_va;mcfg->memseg[j].len = hugepage[i].size;mcfg->memseg[j].socket_id = hugepage[i].socket_id;mcfg->memseg[j].hugepage_sz = hugepage[i].size;}

2.3.其他

rte_eal_hugepage_init只会被RTE_PROC_PRIMARY的进程调用(多进程情况下)。rte_eal_hugepage_init完成后只是将可用的大页内存物理地址,虚拟地址,socket id,大小信息保存到了全局变量中,怎么使用这些内存还需要进一步管理。

这篇关于DPDK使用hugepage原理总结的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/412817

相关文章

C++ Sort函数使用场景分析

《C++Sort函数使用场景分析》sort函数是algorithm库下的一个函数,sort函数是不稳定的,即大小相同的元素在排序后相对顺序可能发生改变,如果某些场景需要保持相同元素间的相对顺序,可使... 目录C++ Sort函数详解一、sort函数调用的两种方式二、sort函数使用场景三、sort函数排序

Java String字符串的常用使用方法

《JavaString字符串的常用使用方法》String是JDK提供的一个类,是引用类型,并不是基本的数据类型,String用于字符串操作,在之前学习c语言的时候,对于一些字符串,会初始化字符数组表... 目录一、什么是String二、如何定义一个String1. 用双引号定义2. 通过构造函数定义三、St

Pydantic中Optional 和Union类型的使用

《Pydantic中Optional和Union类型的使用》本文主要介绍了Pydantic中Optional和Union类型的使用,这两者在处理可选字段和多类型字段时尤为重要,文中通过示例代码介绍的... 目录简介Optional 类型Union 类型Optional 和 Union 的组合总结简介Pyd

Vue3使用router,params传参为空问题

《Vue3使用router,params传参为空问题》:本文主要介绍Vue3使用router,params传参为空问题,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐... 目录vue3使用China编程router,params传参为空1.使用query方式传参2.使用 Histo

使用Python自建轻量级的HTTP调试工具

《使用Python自建轻量级的HTTP调试工具》这篇文章主要为大家详细介绍了如何使用Python自建一个轻量级的HTTP调试工具,文中的示例代码讲解详细,感兴趣的小伙伴可以参考一下... 目录一、为什么需要自建工具二、核心功能设计三、技术选型四、分步实现五、进阶优化技巧六、使用示例七、性能对比八、扩展方向建

使用Python实现一键隐藏屏幕并锁定输入

《使用Python实现一键隐藏屏幕并锁定输入》本文主要介绍了使用Python编写一个一键隐藏屏幕并锁定输入的黑科技程序,能够在指定热键触发后立即遮挡屏幕,并禁止一切键盘鼠标输入,这样就再也不用担心自己... 目录1. 概述2. 功能亮点3.代码实现4.使用方法5. 展示效果6. 代码优化与拓展7. 总结1.

使用Python开发一个简单的本地图片服务器

《使用Python开发一个简单的本地图片服务器》本文介绍了如何结合wxPython构建的图形用户界面GUI和Python内建的Web服务器功能,在本地网络中搭建一个私人的,即开即用的网页相册,文中的示... 目录项目目标核心技术栈代码深度解析完整代码工作流程主要功能与优势潜在改进与思考运行结果总结你是否曾经

Linux中的计划任务(crontab)使用方式

《Linux中的计划任务(crontab)使用方式》:本文主要介绍Linux中的计划任务(crontab)使用方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录一、前言1、linux的起源与发展2、什么是计划任务(crontab)二、crontab基础1、cro

kotlin中const 和val的区别及使用场景分析

《kotlin中const和val的区别及使用场景分析》在Kotlin中,const和val都是用来声明常量的,但它们的使用场景和功能有所不同,下面给大家介绍kotlin中const和val的区别,... 目录kotlin中const 和val的区别1. val:2. const:二 代码示例1 Java

C++变换迭代器使用方法小结

《C++变换迭代器使用方法小结》本文主要介绍了C++变换迭代器使用方法小结,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧... 目录1、源码2、代码解析代码解析:transform_iterator1. transform_iterat