NOIP2015提高组第二轮T1:能量项链

2023-11-22 13:45

本文主要是介绍NOIP2015提高组第二轮T1:能量项链,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

题目链接

[NOIP2006 提高组] 能量项链

题目描述

在 Mars 星球上,每个 Mars 人都随身佩带着一串能量项链。在项链上有 N N N 颗能量珠。能量珠是一颗有头标记与尾标记的珠子,这些标记对应着某个正整数。并且,对于相邻的两颗珠子,前一颗珠子的尾标记一定等于后一颗珠子的头标记。因为只有这样,通过吸盘(吸盘是 Mars 人吸收能量的一种器官)的作用,这两颗珠子才能聚合成一颗珠子,同时释放出可以被吸盘吸收的能量。如果前一颗能量珠的头标记为 m m m,尾标记为 r r r,后一颗能量珠的头标记为 r r r,尾标记为 n n n,则聚合后释放的能量为 m × r × n m \times r \times n m×r×n(Mars 单位),新产生的珠子的头标记为 m m m,尾标记为 n n n

需要时,Mars 人就用吸盘夹住相邻的两颗珠子,通过聚合得到能量,直到项链上只剩下一颗珠子为止。显然,不同的聚合顺序得到的总能量是不同的,请你设计一个聚合顺序,使一串项链释放出的总能量最大。

例如:设 N = 4 N=4 N=4 4 4 4 颗珠子的头标记与尾标记依次为 ( 2 , 3 ) ( 3 , 5 ) ( 5 , 10 ) ( 10 , 2 ) (2,3)(3,5)(5,10)(10,2) (2,3)(3,5)(5,10)(10,2)。我们用记号 ⊕ \oplus 表示两颗珠子的聚合操作, ( j ⊕ k ) (j \oplus k) (jk) 表示第 j , k j,k j,k 两颗珠子聚合后所释放的能量。则第 4 4 4 1 1 1 两颗珠子聚合后释放的能量为:

( 4 ⊕ 1 ) = 10 × 2 × 3 = 60 (4 \oplus 1)=10 \times 2 \times 3=60 (41)=10×2×3=60

这一串项链可以得到最优值的一个聚合顺序所释放的总能量为:

( ( ( 4 ⊕ 1 ) ⊕ 2 ) ⊕ 3 ) = 10 × 2 × 3 + 10 × 3 × 5 + 10 × 5 × 10 = 710 (((4 \oplus 1) \oplus 2) \oplus 3)=10 \times 2 \times 3+10 \times 3 \times 5+10 \times 5 \times 10=710 (((41)2)3)=10×2×3+10×3×5+10×5×10=710

输入格式

第一行是一个正整数 N N N 4 ≤ N ≤ 100 4 \le N \le 100 4N100),表示项链上珠子的个数。第二行是 N N N 个用空格隔开的正整数,所有的数均不超过 1000 1000 1000。第 i i i 个数为第 i i i 颗珠子的头标记( 1 ≤ i ≤ N 1 \le i \le N 1iN),当 i < N i<N i<N 时,第 i i i 颗珠子的尾标记应该等于第 i + 1 i+1 i+1 颗珠子的头标记。第 N N N 颗珠子的尾标记应该等于第 1 1 1 颗珠子的头标记。

至于珠子的顺序,你可以这样确定:将项链放到桌面上,不要出现交叉,随意指定第一颗珠子,然后按顺时针方向确定其他珠子的顺序。

输出格式

一个正整数 E E E E ≤ 2.1 × 1 0 9 E\le 2.1 \times 10^9 E2.1×109),为一个最优聚合顺序所释放的总能量。

样例 #1

样例输入 #1

4
2 3 5 10

样例输出 #1

710

算法思想

根据题目描述,测试样例的合并过程如下:
在这里插入图片描述
由于只能合并相邻两个珠子,因此可以使用区间型动态规划的思想进行处理。

状态表示

f [ i ] [ j ] f[i][j] f[i][j]表示从第 i i i颗珠子一直合并到第 j j j颗珠子释放的最大能量

状态计算

从最小的聚合长度 2 2 2开始计算,以每次聚合为阶段,枚举聚合的起点,根据最后一次聚合的位置可以分为下面几种情况:

  • 最后一次在 i i i位置聚合,即将第 i i i颗珠子和后面的 [ i + 1... j ] [i+1...j] [i+1...j]珠子聚合,得到的分数为 f [ i ] [ i ] + f [ i + 1 ] [ j ] + s [ i ] × s [ i + 1 ] × r [ j ] f[i][i]+f[i+1][j]+s[i]\times s[i+1]\times r[j] f[i][i]+f[i+1][j]+s[i]×s[i+1]×r[j]

  • 最后一次在 i + 1 i+1 i+1位置聚合,即将前面的 [ i . . . i + 1 ] [i...i+1] [i...i+1]颗珠子和后面的 [ i + 2... j ] [i+2...j] [i+2...j]颗珠子聚合,得到的分数为 f [ i ] [ i + 1 ] + f [ i + 2 ] [ j ] + s [ i ] × s [ i + 2 ] × r [ j ] f[i][i+1]+f[i+2][j]+s[i]\times s[i+2]\times r[j] f[i][i+1]+f[i+2][j]+s[i]×s[i+2]×r[j]

  • 最后一次在 k k k位置聚合,即将前面的 [ i . . . k ] [i...k] [i...k]颗珠子和后面的 [ k + 1... j ] [k+1...j] [k+1...j]颗珠子聚合,得到的分数为 f [ i ] [ i + k ] + f [ k + 1 ] [ j ] + s [ i ] × s [ k + 1 ] × r [ j ] f[i][i+k]+f[k+1][j]+s[i]\times s[k+1]\times r[j] f[i][i+k]+f[k+1][j]+s[i]×s[k+1]×r[j]

  • 最后一次在 j − 1 j-1 j1位置聚合,即将前面的 [ i . . . j − 1 ] [i...j-1] [i...j1]颗珠子和第 j j j颗珠子聚合,得到的分数为 f [ i ] [ j − 1 ] + f [ j ] [ j ] + s [ i ] × s [ j ] × r [ j ] f[i][j-1]+f[j][j]+s[i]\times s[j]\times r[j] f[i][j1]+f[j][j]+s[i]×s[j]×r[j]

f [ i ] [ j ] f[i][j] f[i][j]为以上情况的最大值。其中 s [ i ] s[i] s[i]表示第 i i i颗能量珠的头标记, r [ j ] r[j] r[j]表示第 j j j颗能量珠的尾标记, s [ i ] × s [ j ] × r [ j ] s[i]\times s[j]\times r[j] s[i]×s[j]×r[j]表示将两堆能量珠聚合释放的能量。

初始状态

  • 为计算最大值 f [ i ] [ j ] f[i][j] f[i][j]应初始化 0 0 0
  • f [ i ] [ i ] f[i][i] f[i][i]表示合并1堆,无效状态也应初始化为 0 0 0

除此之外,由于可以随意指定第一颗珠子,然后按顺时针方向确定其他珠子的顺序,也就是说可以从任何一点出发进行合并。因此,需要采用拆环为链的方式进行处理,最后求以任意起点开始求释放能量的最大值。

时间复杂度

状态数为 n × n n\times n n×n,状态计算时需要枚举最后一次合并位置,因此时间复杂度为 O ( n 3 ) O(n^3) O(n3)

代码实现

#include <iostream>
#include <cstring>
#include <algorithm>
using namespace std;
const int N = 210;
int f[N][N];
//s[i]表示第i颗珠子的头标记,r[i]表示尾标记
int s[N], r[N];
int main()
{int n;cin >> n;for(int i = 1; i <= n; i ++) {cin >> s[i];s[i + n] = s[i]; //拆环为链}//处理尾标记for(int i = 1; i < 2 * n; i ++) r[i] = s[i + 1];//枚举聚合长度for(int len = 2; len <= n; len ++){//枚举聚合起点for(int i = 1; i + len - 1 <= n * 2; i ++){int j = i + len - 1; //聚合的结束位置//枚举聚合位置for(int k = i; k < j; k ++)f[i][j] = max(f[i][j], f[i][k] + f[k + 1][j] + s[i] * s[k + 1] * r[j]);}}//求以任一点为起点的最大值int ans = 0;for(int i = 1; i <= n; i ++)ans = max(ans, f[i][i + n - 1]);cout << ans;return 0;
}

这篇关于NOIP2015提高组第二轮T1:能量项链的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/410564

相关文章

如何提高Redis服务器的最大打开文件数限制

《如何提高Redis服务器的最大打开文件数限制》文章讨论了如何提高Redis服务器的最大打开文件数限制,以支持高并发服务,本文给大家介绍的非常详细,感兴趣的朋友跟随小编一起看看吧... 目录如何提高Redis服务器的最大打开文件数限制问题诊断解决步骤1. 修改系统级别的限制2. 为Redis进程特别设置限制

键盘快捷键:提高工作效率与电脑操作的利器

键盘快捷键:提高工作效率与电脑操作的利器 在数字化时代,键盘快捷键成为了提高工作效率和优化电脑操作的重要工具。无论是日常办公、图像编辑、编程开发,还是游戏娱乐,掌握键盘快捷键都能带来极大的便利。本文将详细介绍键盘快捷键的概念、重要性、以及在不同应用场景中的具体应用。 什么是键盘快捷键? 键盘快捷键,也称为热键或快捷键,是指通过按下键盘上的一组键来完成特定命令或操作的方式。这些快捷键通常涉及同

CSP 2023 提高级第一轮 CSP-S 2023初试题 完善程序第二题解析 未完

一、题目阅读 (最大值之和)给定整数序列 a0,⋯,an−1,求该序列所有非空连续子序列的最大值之和。上述参数满足 1≤n≤105 和 1≤ai≤108。 一个序列的非空连续子序列可以用两个下标 ll 和 rr(其中0≤l≤r<n0≤l≤r<n)表示,对应的序列为 al,al+1,⋯,ar​。两个非空连续子序列不同,当且仅当下标不同。 例如,当原序列为 [1,2,1,2] 时,要计算子序列 [

如何提高 GitHub 的下载速度

如何提高 GitHub 的下载速度 文章目录 如何提高 GitHub 的下载速度1. 注册账号2. 准备好链接3. 创建仓库4. 在码云上下载代码5. 仓库更新了怎么办 一般来说,国内的朋友从 GitHub 上面下载代码,速度最大是 20KB/s,这种龟速,谁能忍受呢? 本文介绍一种方法——利用“码云”,可以大大提高下载速度,亲测有效。 1. 注册账号 去“码云”注册一

如何提高开发的效率,让老板不知所措的给你发工资

设计模式 UML JSP 编程 数据结构 1.你可能会常常发现,写了一段代码后,编译程序时是一大堆的出错 (原因:语法不熟)  ──别担心,这是每个程序员必须经历的事,这时候你就需要更大的耐心及细心,对每一行代码进行仔细人阅读并改正,这个很重要,这可以培养你的理解代码能力,所以要常读程序,不要等到程序运行以后才知道你的程序的结果。  ──如何避免:在写代码以前,要认真的学习计算机语

T1打卡——mnist手写数字识别

🍨 本文为🔗365天深度学习训练营中的学习记录博客🍖 原作者:K同学啊 1.定义GPU import tensorflow as tfgpus=tf.config.list_physical_devices("GPU")if gpus:gpu0=gpus[0]tf.config.experimental.set_memort_groth(gpu0,True) #设置GPU现存用量按需

Java开发实例大全提高篇——Applet的应用

开发十年,就只剩下这套架构体系了! >>>    第21章  Applet的应用 21.1  Applet在html中的使用 实例549  在html中显示Applet HtmlShowApplet.java     public void paint(Graphics g){         g.drawString("html文件已经运行", 50, 50);// 绘制文本

Java开发实例大全提高篇——Java安全

开发十年,就只剩下这套架构体系了! >>>    第6篇  Java安全与Applet应用篇 第20章  Java安全 20.1  Java对称加密 实例531  使用BASE64加密     public static String encryptBASE64(byte[] data) {         //加密数据         return (new BASE64Encoder()

2024国赛论文拿奖快对照这几点及评阅要点,勿踩雷区!(国赛最后冲刺,提高获奖概率)

↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑ 2024“高教社杯”全国大学生数学建模竞赛已过去第三个夜晚,小伙伴们都累了没有,如果感到思维滞涩,别忘了稍作休息,放松一下自己,准备迎接国赛非常重要的收尾阶段——论文。 国赛这几天的努力最后都

能量项链,洛谷

解释:  环形dp问题还是考虑将环拉直,可以参考我上一篇文章:环形石子合并 [2 3 5 10 2] 3 5 10 将环拉直,[]内是一个有效的区间,可以模拟吸收珠子的过程,         如[2 3 5] <=>(2,3)(3,5)    2是头,3是中间,5是尾 len >= 3:因为最后[2 10 2]是最小的可以合并的有效区间 len <= n + 1因为[2 3